Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
=(4 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
=(22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
=(24 - 1)(24 + 1)(28 + 1)(216 + 1)
=(28 - 1)(28 + 1)(216 + 1)
=(216 - 1)(216 + 1)
=(232 - 1)
\(a,\left(x-5\right)\left(2x+1\right)-2x\left(x-3\right)\\ =x.2x-5.2x+x-5-2x.x-2x.\left(-3\right)\\ =2x^2-10x+x-5-2x^2+6x\\ =2x^2-2x^2-10x+x+6x-5\\ =-3x-5\)
\(b,\left(2+3x\right)\left(2-3x\right)+\left(3x+4\right)^2\\ =\left[2^2-\left(3x\right)^2\right]+\left[\left(3x\right)^2+2.3x.4+4^2\right]\\=4-9x^2+\left(9x^2+24x+16\right)\\ =24x+20\)
Đặt A=3(22 +1)(24+1)(28+1)(216+1)
=(4-1)(22+1)(24+1)(28+1)(216+1)
=[(22-1)(22+1)](24+1)(28+1)(216+1)
=(24-1)(24+1)(28+1)(216+1)
=(28-1)(28+1)(216+1)
=(216-1)(216+1)
=232-1
3(22 +1)(24+1)(28+1)(216+1) = (22 -1)(22 +1)(24+1)(28+1)(216+1) = (24-1)(24+1)(28+1)(216+1) = (28-1)(28+1)(216+1)
= (216-1)(216+1) = 232-1
\(a,=\left(x+8-x+2\right)^2=10^2=100\\ b,=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\\ c,=x^3+1-x^3+1=2\)
Đặt A=3(22 +1)(24+1)(28+1)(216+1)
=(4-1)(2^2+1)(2^4+1)(28+1)(2^16+1)
=[(2^2-1)(2^2+1)](2^4+1)(2^8+1)(2^16+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)
Theo mình ý a bn làm đc
A=\(2^{n-1}+2.2^n+3-8.2^{n-4}-16.2^n=\)\(\frac{2^n}{2}+2.2^n-8.\frac{2^n}{2^4}-16.2^n+3\)
=\(2^n\left(\frac{1}{2}+2-\frac{8}{16}-16\right)+3\)=\(-14.2^n+3\)
\(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1-6x+1\right)^2\)
\(=2^2=4\)
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
bạn ơi!! 28 +1 chứ, bn xem lại đề cấy