Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ ....
A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
=\(\frac{1}{x}-\frac{1}{x-5}\)
=\(-\frac{5}{x^2-5x}\)
b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)
<=> x=-1, thay vào tính nốt
a) ĐK: \(x\ne-3;x\ne-2;x\ne1\)
\(A=\left(\frac{2-x}{x+3}+\frac{x-3}{x+2}+\frac{2-x}{\left(x+2\right)\left(x+3\right)}\right):\frac{x-1-x}{x-1}\)
\(=\frac{\left(2-x\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}:\frac{-1}{x-1}\)
\(=\frac{4-x^2+x^2-9+2-x}{\left(x+2\right)\left(x+3\right)}.\left(1-x\right)\)
\(=\frac{-x-3}{\left(x+2\right)\left(x+3\right)}.\left(1-x\right)=\frac{-1}{x+2}.\left(1-x\right)=\frac{x-1}{x+2}\)
b) A = 0 \(\Leftrightarrow\)\(\frac{x-1}{x+2}=0\)
Do x khác -2 nên x - 1 = 0 hay x = 1 (loại vì ko thỏa ĐK)
A = 0 \(\Leftrightarrow\)\(\frac{x-1}{x+2}>0\)Xét 2 TH:
- TH1: x - 1 > 0 và x + 2 > 0 suy ra x > 1 và x > -2 nên ta chọn x > 1.
- TH1: x - 1 < 0 và x + 2 < 0 suy ra x < 1 và x < -2 nên ta chọn x < -2. Và x khác -3
Vậy để A > 0 thì x > 1 hoặc x < -2 \(\left(x\ne-3\right)\)
bài này dễ mà mk gợi ý rồi cậu tự làm ha . tách mẫu x^2 + 5x + 6 sau đó đặt nhân tử chung rồi tính con ve sau thì quy đồng lên rồi tính . mk goi y thế chắc cậu ko hiểu lắm đúng ko nhưg hiện h mk bạn làm chưa có ai thèm giải hộ mk có cậu làm đc phần đó thì giải hộ mk đi . Làm ơn !
Bài 2 :
a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)
b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)
\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)
\(A=\frac{x-2}{x+2}\)
c) Thay x = 4 ta có :
\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)
Vậy.........
\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)
\(\left(5x-2\right)\left(25x^2+10x+4\right)\)
\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)
\(=\left(5x\right)^3-2^3\)
\(=125x^3-8\)
Huỳnh Thoại m ghi thế bố t cx chả hỉu k it lm ns luôn đi lại còn bày đặt giỏi đã ngu còn tỏ ra ngu hơn
tử M=4x-8+3x+6-5x-2=2x
mẫu M=(x-2)(x+2)
2) tử=0=>x=0
mẫu =0=>x=+-2
M<0=>M<-2 hoaăc 0<m<2
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
\(A=\left|-3\right|+2+\left|5x\right|\)
\(A=3+2+\left(-5x\right)=-5x+5\)