Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}-\frac{-2}{9}-\frac{7}{5}\right)-\frac{5x}{2}\left(\frac{x}{5}-\frac{4}{5}\right)\)
\(M=\frac{-2x}{3}+3x\left[\frac{x}{6}-\left(-\frac{2}{9}\right)-\frac{7}{5}\right]-\frac{5x}{4}\left(\frac{x}{5}-\frac{4}{5}\right)\)
\(M=\frac{-2x}{3}+3x\left(\frac{x}{6}+\frac{2}{9}-\frac{7}{5}\right)-\frac{5x}{2}\left(\frac{x}{5}-\frac{4}{5}\right)\)
\(M=-\frac{2x}{3}+3x\left(\frac{x}{6}-\frac{53}{45}\right)-\frac{5x}{2}.\frac{x-4}{5}\)
\(M=-\frac{2x}{3}+3x\left(\frac{x}{6}-\frac{53}{45}\right)-\frac{5x\left(x-4\right)}{10}\)
\(M=-\frac{2x}{3}+3x\left(\frac{x}{6}-\frac{53}{45}\right)-\frac{x\left(x-4\right)}{2}\)
\(M=-\frac{2x}{3}+\frac{x^2}{2}-\frac{53x}{15}-\frac{x\left(x-4\right)}{2}\)
\(M=\left(-\frac{2x}{3}-\frac{53x}{15}\right)+\frac{x^2}{2}-\frac{x\left(x-4\right)}{2}\)
\(M=-\frac{21x}{5}+\frac{x^2}{2}-\frac{x\left(x-4\right)}{2}\)
\(M=\frac{-2.21x+5x^2-5x\left(x-4\right)}{10}\)
\(M=\frac{-42x+5x^2-5x\left(x-4\right)}{10}\)
\(M=\frac{-x\left[42-5x+5\left(x-4\right)\right]}{10}\)
\(M=\frac{-x\left(42-5x+5x-20\right)}{10}\)
\(M=\frac{-x\left(42-20\right)}{10}\)
\(M=\frac{-x.22}{10}\)
\(M=-\frac{22x}{10}\)
\(M=-\frac{11x}{5}\)
\(b)\) Ta có :
\(C=\left|x+1\right|+\left|x-3\right|\)
\(C=\left|x+1\right|+\left|3-x\right|\ge\left|x+1+3-x\right|=\left|4\right|=4\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(3-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x+1\ge0\\3-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le3\end{cases}\Leftrightarrow}-1\le x\le3}\)
Trường hợp 2 :
\(\hept{\begin{cases}x+1\le0\\3-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge3\end{cases}}}\) ( loại )
Vậy \(C=4\) khi \(-1\le x\le3\)
Chúc bạn học tốt ~