K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}=x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

10 tháng 5 2022

\(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}=\dfrac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\)

                            \(=\dfrac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}=\dfrac{1-x}{1-\sqrt{x}}-\dfrac{x\sqrt{x}-\sqrt{x}}{1-\sqrt{x}}\)

                          \(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1-\sqrt{x}}-\dfrac{\sqrt{x}\left(x-1\right)}{1-\sqrt{x}}\)

                               \(=1+\sqrt{x}+\sqrt{x}\left(1+\sqrt{x}\right)\)

                               \(=1+\sqrt{x}+\sqrt{x}+x=x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

31 tháng 10 2021

\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

4 tháng 5 2023

ĐKXĐ: x≥0,x≠1.Ở đây mình làm ngắn gọn nhé, bạn chỉ cần ghi đề bài dưới đkxđ là được.

P=(√x+1+√x-1+x+1)/(√x-1)(√x+1)

=   (x+2√x+1)/(√x+1)(√x-1)

=   (√x+1)^2/(√x+1)(√x-1)

=  (√x+1)/(√x-1)

 Vậy P=(√x+1)/(√x-1) với x ≥ 0,x≠1

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(x+\sqrt{x}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\left(x+\sqrt{x}\right)\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\cdot\left(\sqrt{x}+1\right)\)

\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}}{x-1}=\dfrac{2x}{x-1}\)

b: Để Q là số nguyên thì \(2x⋮x-1\)

=>\(2x-2+2⋮x-1\)

=>\(2⋮x-1\)

=>\(x-1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;2;3\right\}\)

29 tháng 12 2022

\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2.\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\)

\(=\left(\dfrac{1-x}{2\sqrt{x}}\right)^2.\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)

\(=\dfrac{\left(1-x\right)^2}{2\sqrt{x}}.\dfrac{-4\sqrt{x}}{-\left(1-x\right)}\)

\(=\left(1-x\right).2\sqrt{x}\)

\(=2\sqrt{x}-2x\sqrt{x}\)