K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

 Rút gọn : \(P=\left(\frac{1}{x-2}-\frac{1}{x+2}+1\right):\frac{1}{x^2-4}\)

\(P=\left(\frac{x+2}{x^2-4}-\frac{x-2}{x^2-4}+\frac{\left(x+2\right)\left(x-2\right)}{x^2-4}\right):\frac{1}{x^2-4}\)

\(P=\frac{x+2-x+2+x^2-4}{x^2-4}:\frac{1}{x^2-4}\)

\(P=\frac{x^2}{x^2-4}.\frac{x^2-4}{1}\)

\(P=x^2\)

........

mk chỉ biết làm rút gọn thôi nha

10 tháng 4 2019

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{8}{x^2-1}\right):\left(\frac{1}{x-1}-\frac{7x+3}{1-x^2}\right)\)

\(A=\left[\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x+1\right)\left(x-1\right)}+\frac{8}{\left(x+1\right)\left(x-1\right)}\right]:\left[\frac{x+1}{\left(x+1\right)\left(x-1\right)}-\frac{3-7x}{\left(x+1\right)\left(x-1\right)}\right]\)

\(A=\left[\frac{x^2+2x+1-x^2+2x-1+8}{\left(x+1\right)\left(x-1\right)}\right]:\frac{x+1-3+7x}{\left(x+1\right)\left(x-1\right)}\)

\(A=\frac{4x+8}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{8x-2}\)

...................... 

10 tháng 4 2019

tìm giá trị x nguyên để A nguyên đi

DD
29 tháng 11 2021

Điều kiện xác định của \(P\)là: 

\(\hept{\begin{cases}x^2+2x+1\ne0\\x^2-1\ne0\\x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)

\(P=\left(\frac{2+x}{x^2+2x+1}-\frac{x-2}{x^2-1}\right).\frac{1-x^2}{x}\)

\(=\left[\frac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\left(x-1\right)}-\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\right].\frac{1-x^2}{x}\)

\(=\frac{2x}{\left(x+1\right)^2\left(x-1\right)}.\frac{1-x^2}{x}=\frac{-2}{x+1}\)

Để \(P\)nguyên mà \(x\)nguyên suy ra \(x+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow x\in\left\{-3,-2,0,1\right\}\)

Đối chiếu điều kiện ta được \(x\in\left\{-3,-2\right\}\)thỏa mãn. 

29 tháng 11 2021

\(P=\left(\frac{2+x}{x^2+2x+1}-\frac{x-2}{x^2-1}\right).\frac{1-x^2}{x}\)

a) ĐKXĐ:

\(\hept{\begin{cases}x^2+2x+1\ne0\\x^2-1\ne0\\x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2\ne0\\\left(x-1\right)\left(x+1\right)\ne0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1\ne0\\x\ne1;x\ne-1\\x\ne0\end{cases}}}\)

<=> x khác -1

       x khác 1; x khác -1

       x khác 0 

<=> x khác -1;1;0

Vậy ĐKXĐ là x khác -1;1;0

b) \(P=\left(\frac{2+x}{x^2+2x+1}-\frac{x-2}{x^2-1}\right).\frac{1-x^2}{x}\)

\(\Rightarrow P=\left(\frac{2+x}{\left(x+1\right)^2_{x-1}}-\frac{x-2}{\left(x-1\right)\left(x+1\right)_{x+1}}\right).\frac{1-x}{x}\)

MTC: (x+1)^2(x-1)

\(\Rightarrow P=\left(\frac{\left(2+x\right)\left(x-1\right)}{\left(x+1\right)^2\left(x-1\right)}-\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\right).\frac{1-x}{x}\)

\(\Rightarrow P=\left(\frac{2x-2+x^2-x}{\left(x+1\right)^2\left(x-1\right)}-\frac{x^2+x-2x-2}{\left(x+1\right)^2\left(x-1\right)}\right)\frac{1-x}{x}\)

\(\Rightarrow P=\left(\frac{x-2+x^2-x^2+x+2}{\left(x+1\right)^2\left(x-1\right)}\right).\frac{1-x}{x}\)

\(\Rightarrow P=\frac{2x}{\left(x+1\right)^2\left(x-1\right)}.\frac{1-x}{x}\)

\(\Rightarrow P=\frac{2x}{-\left(1-x\right)\left(x+1\right)^2}.\frac{1-x}{x}\)

\(\Rightarrow P=-\frac{x}{\left(x+1\right)^2}\) (tmđkxđ)

c)

\(P=-\frac{x}{\left(x+1\right)^2}=-\frac{x+1-1}{\left(x+1\right)\left(x+1\right)}=-\frac{x+1}{x+1}-\frac{1}{x+1}=-1-\frac{1}{x+1}\) ( ĐKXĐ là x khác -1;1;0) \(\left(P\in Z\right)\)

\(P\in Z\Leftrightarrow\frac{-1}{x+1}\)

Nên x+1 thuộc Ư(-1)={1;-1)

x+1=1=>x=1-1=0 ( o t/m đk)

x+1=-1=>x=-1-1=-2( (t/m đk) 

<=> x thuộc -2 thì gt của BT P là số nguyên 

28 tháng 5 2015

a,C=(1/(1-x)+2/(x+1)-(5-x)/(1-x2)):(1-2x)/(x2-1)  ĐKXĐ:x khác -1 và 1

  =((x+1+1-x)/(1-x2)-(5-x)/(1-x2):(1-2x)/(x2-1)

  =(x-3)/(1-x2):(1-2x)/(x2-1)

  =(3-x)(x2-1):(1-2x)/(x2-1)

  =(3-x)/(1-2x)

b, Giá trị của B nguyên khi x=-2;0;1;3

20 tháng 3 2017

sai rồi~