Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2013^{2014}-2013^{2013}}{2013^{2013}-2013^{2012}}=\frac{2013}{1}=2013\)
Ta có:
B=2012/(2013+2014)+2013/(2013+2014)
Xét từng số hạng của B:
2012/(2013+2014)<2012/2013
2013/2013+2014<2013/2014
=>B=2012/(2013+2014)+2013/(2013+2014)<2012/2013+2013/2014=A
=>B<A
Tham Khảo: Câu hỏi của Nguyễn Hữu Tài - Toán lớp 6 | Học trực tuyến
\(B=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}\)
\(\Rightarrow A>B\)
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+1014}+\frac{2013}{2013+1014}\)
Vì: \(\frac{2012}{2013+1014}< \frac{2012}{2013}\)và \(\frac{2013}{2013+2013}< \frac{2013}{2014}\)
\(\Rightarrow A>B\)
~ Rất vui vì giúp đc bn ~
Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)
Ta có A=2012/2013+2013/2014
A=1-1/2013+1-1/2014
A=(1+1)-(1/2013+1/2014)
A=2-(1/2013+1/2014)
Mà 1/2013<1/2;1/2014<1/2
=>1/2013+1/2014<1/2+1/2=1
=>2-(1/2013+1/2014)>1
=>A>1
Mà B<1
=>A>B
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)
Vậy B<A
\(P=\frac{2013^{2014}-2013^{2013}}{2013^{2013}-2013^{2012}}\)
\(=\frac{2013^{2013}\cdot\left(2013-1\right)}{2013^{2012}\cdot\left(2013\right)-1}\)
\(=\frac{2013^{2013}}{2013^{2012}}=2013\)