K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

Giải:

a) \(M=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow3M=2^{32}-1\)

\(\Leftrightarrow M=\dfrac{2^{32}-1}{3}\)

Vậy ...

b) \(N=16\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=\left(7^4-1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=\left(7^8-1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=\left(7^{16}-1\right)\left(7^{16}+1\right)\)

\(\Leftrightarrow3N=7^{32}-1\)

\(\Leftrightarrow N=\dfrac{7^{32}-1}{3}\)

Vậy ...

a: \(=\dfrac{3^8-3^6+3^6\cdot2^3}{5^3}=\dfrac{3^8-3^6\left(1-2^3\right)}{5^3}=\dfrac{11664}{125}\)

b: \(=\dfrac{7^4\cdot4-7^3}{7^3}=7\cdot4-1=27\)

c: \(=28^4-28^4+1=1\)

d: \(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)

\(=3^{32}\)

4 tháng 8 2017

\(1a.\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+1\)

\(=-3x^2+4x+1\)

b) Sai đề.

2a. \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Rightarrow x^2+8x+16-x^2+1=16\)

\(\Rightarrow8x+17=16\)

\(\Rightarrow8x=-1\)

\(\Rightarrow x=-\dfrac{1}{8}\)

b. \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+49=0\)

\(\Rightarrow2x+59=0\)

\(\Rightarrow x=-\dfrac{59}{2}\).

4 tháng 8 2017

Thx

31 tháng 8 2019

a) (x - 1)(x + 1)(x2 + 1)(x4 + 1)(x8 + 1)

= (x2 - 1)(x2 + 1)(x4 + 1)(x8 + 1)

= (x4 - 1)(x4 + 1)(x8 + 1)

= (x8 - 1)(x8 + 1)

= x16 - 1

b) (a2 - 2b)(a2 + 2b)(a4 + 4b2)(a8 + 16b4)

= (a4 - 4b2)(a4 + 4b2)(a8 + 16b4)

= (a8 - 16b4)(a8 + 16b4)

= a16 - 256b8

27 tháng 8 2017

a) Ta có : (x + 5)2 - 16 = 0

=> (x + 5)2 = 16

=> (x + 5)2 = (-4) ; 4

\(\Leftrightarrow\orbr{\begin{cases}x+5=-4\\x+5=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=-1\end{cases}}\)

13 tháng 11 2017

a) \(\left(x+3\right)\left(x-1\right)-2\left(x+3\right)^2+\left(x-4\right)\left(x+4\right)\)

\(=x^2-x+3x-3-2\left(x^2+6x+9\right)+x^2-16\)

\(=2x^2+2x-19-2x^2-12x-18\)

\(=-10x-37\)

b) \(\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{\left(5^2-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{5^{32}-1}{24}\)

13 tháng 11 2017

a) (x+3)(x-1)-2(x+302)+(x-4)(x+4)=x2+2x-3-2x-1800+x2-16=2x2-1819

b)...=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)=(5^4-1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)

=(5^8-1)(5^8+1)(5^16+1)/(5^2-1)=(5^16-1)(5^16+1)/(5^2-1)=(5^32-1)/(5^2-1)

4 tháng 7 2018

Mình làm câu c trước để bạn hình dung ra nhé, câu a tương tự:

c) \(7\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(8-1\right)\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left[\left(2^3-1\right)\left(2^3+1\right)\right]\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^6-1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^{12}-1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^{12}-1\right)\left(2^{24}+1\right)\)

\(=2^{36}-1\)

b) \(\left(x^2-x+4\right)\left(x^2+x+1\right)\left(x^2-1\right)\)

\(=\left(x^2.x^2.x^2\right).\left(-x+4+x+1+\left(-1\right)\right)\)

\(=x^8.\left(-4\right)\)

4 tháng 7 2018

\(a,\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1\)

19 tháng 8 2020

Đặt \(A=12.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

\(\Rightarrow2A=24.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

     \(2A=\left(5^2-1\right).\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

     \(2A=\left(5^4-1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

     \(2A=\left(5^8-1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

     \(2A=\left(5^{16}-1\right).\left(5^{16}+1\right)\)

     \(2A=\left(5^{16}\right)^2-1^2\)

     \(2A=5^{32}-1\)

\(\Rightarrow A=\frac{5^{32}-1}{2}.\)

1 tháng 10 2020

Bài 1 : 

Ta có : \(VP=\left(a+b\right)^4=\left(a+b\right)\left(a+b\right)^3\)

\(=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

=> HĐT ko đc CM 

Bài 2 : 

a, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)

\(=x^3+2x^2+4x-2x^2-4x-8-x+1+7=x^3-x=x\left(x^2-1\right)\)

Sửa đề : b, \(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=8\left(x^3-1\right)-8x^3+1=8x^3-8-8x^3+1=-7\)

1 tháng 10 2020

Xin phép chủ nahf cho mjnh sửa đề:D

\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

a,\(\left(a+b\right)^4\)

\(=\left[\left(a+b\right)^2\right]^2\)

\(=\left(a^2+2ab+b^2\right)^2\)

\(=\left[\left(a^2+2ab\right)+b^2\right]^2\)

\(=\left(a^2+2ab\right)^2+2\left(a^2+2ab\right)b^2+b^4\)

\(=a^4+4a^3b+4a^2b^2+2a^2b^2+4ab^3+b^4\)

\(=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

Bài 2:

a,\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)

\(=\left(x^3-8\right)-\left(x-1\right)+7\)

b,\(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x-1\right)\)

\(=8\left(x^3-1\right)-\left(8x^3-1\right)\)

\(=8x^3-8-8x^3+1\)

\(=-7\)