\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).....\left(1+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

\(\left(1+\dfrac{1}{2}\right).\left(1+\dfrac{1}{3}\right)......\left(1+\dfrac{1}{2015}\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.....\dfrac{2016}{2015}\)

\(=\dfrac{2016}{2}=1008\)

23 tháng 9 2017

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...........\left(1-\frac{1}{2014}\right)\)

\(=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right).........\left(\frac{2014}{2014}-\frac{1}{2014}\right)\)

\(=\frac{1}{2}.\frac{2}{3}............\frac{2013}{2014}\)

\(=\frac{1}{2014}\)

23 tháng 9 2017

(1-1/2).(1-1/3)......(1-1/2014)

=1/2.2/3.....2013/2014

=1.2....2013/2.3.....2014

=1/2014

31 tháng 3 2020

\(B=\left(\frac{3}{5}\right)^2\cdot5^2-\left(2\frac{1}{4}\right)^3:\left(\frac{3}{4}\right)^3+\frac{1}{2}\)

\(B=\left(\frac{3}{5}\cdot5\right)^2-\left(\frac{9}{4}:\frac{3}{4}\right)^3+\frac{1}{2}\)

\(B=3^2-\left(\frac{9}{4}\cdot\frac{4}{3}\right)^3+\frac{1}{2}\)

\(B=3^2-3^3+\frac{1}{2}=-18+\frac{1}{2}=-\frac{35}{2}\)

11 tháng 9 2016

\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)

\(A=\frac{3+1}{3}.\frac{8+1}{8}.\frac{15+1}{15}...\frac{n^2+2n+1}{n^2+2n}\)

\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{\left(n+1\right)^2}{n^2+2n}\)

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)

\(A=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)

\(A=\left(n+1\right).\frac{2}{n+2}=\frac{2.\left(n+1\right)}{n+2}\)

11 tháng 9 2016

Ta có : \(1+\frac{1}{k^2+2k}=\frac{k^2+2k+1}{k^2+2k}=\frac{\left(k+1\right)^2}{k\left(k+2\right)}\) với k thuộc N*

Áp dụng với k = 1,2,3,....,n được : 

\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)

\(=\frac{\left(1+1\right)^2}{1.\left(1+2\right)}.\frac{\left(2+1\right)^2}{2.\left(2+2\right)}.\frac{\left(3+1\right)^2}{3.\left(3+2\right)}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)

\(=\frac{\left[2.3.4...\left(n+1\right)\right]^2}{1.2.3...n.3.4.5...\left(n+2\right)}=\frac{\left[\left(n+1\right)!\right]^2}{n!.\frac{\left(n+2\right)!}{2}}\)

NM
12 tháng 10 2021

ta có:

undefined

12 tháng 10 2021

Thầy làm chi tiết giúp em được ko ạ ?