Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin^2a+cos^2a-sin^4a-2cos^2a+sin^2a\)
\(=2sin^2a-cos^2a-sin^4a\)
\(=2sin^2a-cos^2a-\left(\frac{1-cos2a}{2}\right)^2\)
khai triển ra rồi quy đồng lên
\(=\frac{8sin^2a-4cos^2a-1+2cos2a-cos^22a}{4}\)
Mà \(2cos2a=2\left(cos^2a-1\right)=4cos^2-2\)
\(\Rightarrow\frac{8sin^2a-cos^22a-3}{4}\)
Mà \(-cos^22a=sin^22a-1=4sin^2cos^2-1\)
\(\Rightarrow\frac{8sin^2a+4sin^2a.cos^2a-4}{4}\)
\(=\frac{4sin^2a.\left(2-cos^2a\right)-4}{4}\)
\(=sin^2a\left(1+sin^2a\right)-1\)
\(=sin^4a-cos^2a\)
a)sin a-sin a.cos^2 a=sin a(1-cos^2 a)=sin a(sin^2 a)=sin^3 a
b)sin^4a+cos^4a+2sin^2acos^2a=(sin^2a+cos^2a)^2=1^2=1
Ha Hoang CTV, sao bạn bỏ được dấu giá trị tuyệt đối của 1-2a vậy??
\(A=\sqrt{1-4a+4a^2}-2a=\sqrt{\left(1-2a\right)^2}-2a=\left|1-2a\right|-2a\)
Nếu \(a\le\frac{1}{2}\)thì: \(A=1-2a-2a=1-4a\)
Nếu \(a>\frac{1}{2}\)thì: \(A=2a-1-2a=-1\)
ta có:\(\sqrt{\left(1-2a\right)^2}-2a=|1-2a|-2a\)
th1:neu 1-2a <0 <=>1<2a<=>1/2<a:
l1-2al=2a-1
=>2a-1-2a=-1
th2:neu 1-2a>=0=>1>=2a=>1/2>a ta co:
l1-2al=1-2a
=>1-2a-2a=1-4a
\(P=\dfrac{9\sqrt{a}-\sqrt{25a}+\sqrt{4a^3}}{a^2+2a}=\dfrac{9\sqrt{a}-5\sqrt{a}+2a\sqrt{a}}{a\left(a+2\right)}=\dfrac{4\sqrt{a}+2a\sqrt{a}}{a\left(a+2\right)}=\dfrac{2\sqrt{a}\left(2+a\right)}{a\left(2+a\right)}=\dfrac{2\sqrt{a}}{a}=\dfrac{2.\sqrt{a}}{\sqrt{a}.\sqrt{a}}=\dfrac{2}{\sqrt{a}}\)
\(0< =sin^2x< =1\)
=>\(-2< =sin^2x-2< =-1\)
=>\(sin^2x-2< 0\)
\(0< =cos^2x< =1\)
=>\(-2< =cos^2x-2< =-1\)
\(\Leftrightarrow cos^2x-2< 0\)
\(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4x+4\cdot sin^2x}\)
\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\cdot\left(1-cos^2x\right)}\)
\(=\sqrt{sin^4x-4sin^xx+4}+\sqrt{cos^4x-4\cdot cos^2x+4}\)
\(=\sqrt{\left(sin^2x-2\right)^2}+\sqrt{\left(cos^2x-2\right)^2}\)
\(=\left|sin^2x-2\right|+\left|cos^2x-2\right|\)
\(=2-sin^2x+2-cos^2x\)
\(=4-\left(sin^2x+cos^2x\right)=4-1=3\)