K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2016

\(D=\frac{x^6-y^6}{\left(x-y\right)\left(x^4+x^2y^2+y^4\right)}=\frac{\left(x^2\right)^3-\left(y^2\right)^3}{\left(x-y\right)\left(x^4+x^2y^2+y^4\right)}=\frac{\left(x^2-y^2\right)\left[\left(x^2\right)^2+x^2y^2+\left(y^2\right)^2\right]}{\left(x-y\right)\left(x^4+x^2y^2+y^4\right)}=\frac{\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)}{\left(x-y\right)\left(x^4+x^2y^2+y^4\right)}=\frac{x^2-y^2}{x-y}\)

Gọn thế này được chưa??? hiu

29 tháng 7 2023

a) \(Q=\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y\right)^2\)

\(Q=\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot2\left(x+2y\right)+\left[2\left(x+2y\right)\right]^2\)

\(Q=\left[\left(x-y\right)-2\left(x+2y\right)\right]^2\)

\(Q=\left(x-y-2x-4y\right)^2\)

\(Q=\left(-x-5y\right)^2\)

b) \(A=\left(xy+2\right)^3-6\left(xy+2\right)^2+12\left(xy+2\right)-8\)

\(A=\left(xy+2\right)^3-3\cdot2\cdot\left(xy+2\right)^2+3\cdot2^2\cdot\left(xy+2\right)-2^3\)

\(A=\left[\left(xy+2\right)-2\right]^3\)

\(A=\left(xy+2-2\right)^3\)

\(A=\left(xy\right)^3\)

\(A=x^3y^3\)

c) \(\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)

\(=\left(x^3+6x^2+12x+8\right)+\left(x^2-6x^2+12x-8\right)-\left(2x^3+24x\right)\)

\(=x^3+6x^2+12x+8+x^2-6x^2+12x-8-2x^3-24x\)

\(=\left(x^3+x^3-2x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x-24x\right)+\left(8-8\right)\)

\(=0\)

a: =(x-y)^2-2(x-y)(2x+4y)+(2x+4y)^2

=(x-y-2x-4y)^2=(-x-5y)^2=x^2+10xy+25y^2

b: =(xy+2-2)^3=(xy)^3=x^3y^3

c: =x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x(x^2+12)

=24x+2x^3-2x^3-24x

=0

8 tháng 7 2016

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)

\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)

\(P=\frac{1}{2y-x}\)

Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)

 

8 tháng 7 2016

thanks hihi

8 tháng 7 2016

Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)

      \(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

    \(C=\frac{x+1}{2x^2+y+2}\)

Ta có: 

A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

=>\(P=\left(A:B\right):C\)

       \(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

       \(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)

        \(=\frac{1}{2y-x}\)

=>\(P=\frac{1}{2y-x}\)

Thế x=-1,76 và y=3/25 vào P

=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)

11 tháng 10 2020

Bài 1:

\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y-z\right)^2\)

\(=x^2\)

Bài 2:

đk: \(x\ne\left\{0;-1;-2;-3;-4;-5\right\}\)

Xét BT trái ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+5}\)

\(=\frac{5}{x\left(x+5\right)}=\frac{5}{x^2+5x}\)

GT của biểu thức lớn sẽ là: \(\frac{5}{x^2+5x}\cdot\frac{x^2+5x}{5}=1\) không phụ thuộc vào biến

=> đpcm

11 tháng 10 2020

Bài 1.

( x - y + z ) + ( z - y )2 + ( x - y + z )( 2y - 2z )

= ( x - y + z ) - 2( x - y + z )( z - y ) + ( z - y )2

= [ ( x - y + z ) - ( z - y ) ]2 

= ( x - y + z - z + y )2

= x2

Bài 2. ĐKXĐ tự ghi nhé :))

\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right)\times\left(\frac{x^2+5x}{5}\right)\)

\(=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)

\(=\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)

\(=\left(\frac{1}{x}-\frac{1}{x+5}\right)\times\frac{x\left(x+5\right)}{5}\)

\(=\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{\left(x+5\right)}\right)\times\frac{x\left(x+5\right)}{5}\)

\(=\frac{x+5-x}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}\)

\(=\frac{5}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}=1\)

=> đpcm