Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)
b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)
=>3 căn x=3
=>căn x=1
hay x=1(loại)
Bài 1:
a. ta có \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y\)
= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)
=\(\sqrt{xy}\)
b.ĐK: x ≠ 1
Ta có: A= \(\sqrt{\dfrac{x+2\sqrt{x}+1}{x-2\sqrt{x}+1}}\)=\(\sqrt{\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2}}\)=\(\dfrac{\sqrt{x}+1}{\left|\sqrt{x}-1\right|}\)
*Nếu \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge1\)
⇒ A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
*Nếu \(\sqrt{x}-1< 0\Rightarrow\sqrt{x}< 1\)
⇒ A=\(\dfrac{\sqrt{x}+1}{-\sqrt{x}+1}\)
c.Ta có:
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
có phải/....
1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)
2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
a) - Với \(x>0,x\ne1\), ta có:
\(A=\left(\frac{1}{x-1}+\frac{3\sqrt{x}+5}{x\sqrt{x}-x-\sqrt{x}+1}\right)\left[\frac{\left(\sqrt{x}+1\right)^2}{4\sqrt{x}}-1\right]\)
\(A=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\sqrt{x}\left(x-1\right)-\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}+1}{4\sqrt{x}}-\frac{4\sqrt{x}}{4\sqrt{x}}\right]\)
\(A=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}-4\sqrt{x}+1}{4\sqrt{x}}\right]\)
\(A=\left[\frac{\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x^2-2\sqrt{x}+1}{4\sqrt{x}}\right]\)
\(A=\frac{\sqrt{x}+3\sqrt{x}-1+5}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(A=\frac{4+4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(A=\frac{4\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(A=\frac{4\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}\)
\(A=\frac{4\left(x-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}=\frac{1}{\sqrt{x}}\)
Vậy với \(x>0,x\ne1\)thì \(A=\frac{1}{\sqrt{x}}\)
\(A=\left(\frac{1}{x-1}+\frac{3\sqrt{x}+5}{x\sqrt{x}-x-\sqrt{x}+1}\right)\left[\frac{\left(\sqrt{x}+1\right)^2}{4\sqrt{x}}-1\right]\)
\(=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\sqrt{x}\left(x-1\right)-\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}+1}{4\sqrt{x}}-\frac{4\sqrt{x}}{4\sqrt{x}}\right]\)
\(=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}-4\sqrt{x}+1}{4\sqrt{x}}\right]\)
\(=\left[\frac{\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x^2-2\sqrt{x}+1}{4\sqrt{x}}\right]\)
\(=\frac{\sqrt{x}+3\sqrt{x}-1+5}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(=\frac{4+4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(=\frac{4\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(=\frac{4\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}\)
\(=\frac{4\left(x-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}=\frac{1}{\sqrt{x}}\)
b) \(B=\left(x-\sqrt{x}+1\right)\cdot A=\frac{1}{\sqrt{x}}\left(x-\sqrt{x}+1\right)=\frac{x}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\sqrt{x}-1\)
Xét hiệu B - 1 ta có : \(B-1=\frac{1}{\sqrt{x}}+\sqrt{x}-2=\frac{1}{\sqrt{x}}+\frac{x}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
Dễ thấy \(\hept{\begin{cases}\sqrt{x}>0\forall x>0\\\left(\sqrt{x}-1\right)^2\ge0\forall x\ge0\end{cases}}\Rightarrow\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\ge0\forall x>0\)
Đẳng thức xảy ra <=> x = 1 ( ktm ĐKXĐ )
Vậy đẳng thức không xảy ra , hay chỉ có B - 1 > 0 <=> B > 1 ( đpcm )
Rút gọn biểu thức x−1√x+1x−1x+1 với x ≥ 0 được kết quả là
A. x - 1
B. √x−1x−1
C. x + 1
D. √x+1
c