Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
\(\dfrac{2-\sqrt{5}}{2+\sqrt{5}}+\dfrac{\sqrt{5}+2}{\sqrt{5}-2}\)
\(=\dfrac{\left(2-\sqrt{5}\right)^2}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}+\dfrac{\left(\sqrt{5}+2\right)^2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)
\(=\dfrac{4-4\sqrt{5}+5}{4-5}+\dfrac{5+4\sqrt{5}+4}{5-4}\)
\(=-4+4\sqrt{5}-5+5+4\sqrt{5}+4\)
\(=8\sqrt{5}\)
\(=\dfrac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}+\dfrac{\left(\sqrt{5}+2\right)^2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)
\(=\dfrac{9-4\sqrt{5}}{-1}+9+4\sqrt{5}\)
=9+4căn 5-9+4căn 5
=8*căn 5
\(=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{5}+1}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{5}+1}\)
\(=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\)
\(=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{4}\)
\(=\sqrt{2}\cdot\dfrac{2}{4}=\dfrac{1}{\sqrt{2}}\)
Ta có: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}}-\dfrac{1}{\sqrt{5}-2}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}}-\dfrac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)
\(=\sqrt{5}+2-\sqrt{5}-2=0\)
Chắc đề là: \(\dfrac{\sqrt{2}}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}-\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{4}-\sqrt{\dfrac{6+2\sqrt{5}}{4}}\)
\(=\dfrac{\sqrt{10}-\sqrt{2}}{4}-\sqrt{\left(\dfrac{\sqrt{5}+1}{2}\right)^2}=\dfrac{\sqrt{10}-\sqrt{2}}{4}-\dfrac{\sqrt{5}+1}{2}=\dfrac{\sqrt{10}-\sqrt{2}-2\sqrt{5}-2}{4}\)
\(A=\dfrac{\sqrt{6+2\sqrt{5}}}{2-\sqrt{6-2\sqrt{5}}}-\dfrac{\sqrt{6-2\sqrt{5}}}{2+\sqrt{6+2\sqrt{5}}}\)
\(=\dfrac{\sqrt{5}+1}{2-\sqrt{5}+1}-\dfrac{\sqrt{5}-1}{3+\sqrt{5}}\)
\(=\dfrac{\left(3+\sqrt{5}\right)\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\left(3-\sqrt{5}\right)}{4}\)
\(=\dfrac{3\sqrt{5}+3+5+\sqrt{5}-3\sqrt{5}+5+3-\sqrt{5}}{4}\)
\(=4\)
Đặt \(x=\sqrt{\dfrac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\dfrac{5-2\sqrt{6}}{5+\sqrt{6}}}>0\)
\(x^2=\dfrac{5+2\sqrt{6}}{5-\sqrt{6}}+\dfrac{5-2\sqrt{6}}{5+\sqrt{6}}+2\sqrt{\dfrac{25-24}{25-6}}=\dfrac{74}{19}+\dfrac{2\sqrt{19}}{19}\)
\(\Rightarrow x^2=\dfrac{74+2\sqrt{19}}{19}\Rightarrow x=\sqrt{\dfrac{74+2\sqrt{19}}{19}}\)
Ko thể rút gọn thêm nữa (có thể trục căn thức ở mẫu)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)
\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)
\(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)