K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2024

\(a.\left(x+y\right)^2+\left(x-y\right)^2\\ =x^2+2xy+y^2+x^2-2xy+y^2\\ =2x^2+2y^2\\ b.\left(x-y\right)^2-\left(x+y\right)^2\\ =x^2-2xy+y^2-x^2-2xy-y^2\\ =-4xy\\ c.2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\\ =2\left(x^2-y^2\right)+\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\\ =2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2\\ =4x^2\\ d.\left(x+y\right)^2-4xy-\left(x-y\right)^2\\ =x^2+2xy+y^2-4xy-x^2+2xy-y^2\\ =0\\ e.\left(x-2y\right)\left(x+2y\right)+\left(x+2y\right)^2\\ =x^2-4y^2+x^2+4xy+4y^2\\ =2x^2+4xy\)

16 tháng 8 2016

đã tắt máy chưa để cho mình giải nha

16 tháng 8 2016

Giúp mik nha mọi người :)

16 tháng 8 2016

\(B=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)

\(=\frac{x^2y-x^2z+zy^2-xy^2+z^2x-z^2y}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)

\(=\frac{\left(x^2y-z^2y\right)-\left(xy^2-zy^2\right)-\left(x^2z-z^2x\right)}{\left(x^2-y^2\right)\left(y-z\right)}\)

\(=\frac{\left[y\left(x+z\right)-y^2-xz\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left(xy+zy-y^2-xz\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left[\left(xy-y^2\right)-\left(xz-zy\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left[y\left(x-y\right)-z\left(x-y\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{x-z}{x+y}\)

16 tháng 8 2016

\(A=\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)

\(=\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}\)

\(=\frac{\left(x^2y+x^2\right)+\left(x^2y^2-y^2\right)-\left(y+1\right)}{\left(x^2y+x^2\right)+\left(x^2y^2+y^2\right)+\left(y+1\right)}\)

\(=\frac{x^2\left(y+1\right)+y^2\left(x^2-1\right)-\left(y+1\right)}{x^2\left(y+1\right)+y^2\left(x^2+1\right)+\left(y+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(y+1\right)+y^2\left(x^2-1\right)}{\left(x^2+1\right)\left(y+1\right)+y^2\left(x^2+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(y^2+y+1\right)}{\left(x^2+1\right)\left(y^2+y+1\right)}\)

\(=\frac{x^2-1}{x^2+1}\)

4 tháng 7 2017

a/ \(\left(x-2y\right)^2+3\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(x-2y+3x-6y\right)=\left(x-2y\right)\left(4x-8y\right)\)

\(=4\left(x-2y\right)\left(x-2y\right)=4\left(x-2y\right)^2\)

b/ \(\left(y^2+1\right)\left(y+2\right)-\left(y+2\right)\left(y^2-2y+4\right)\)

\(=y^3+2y^2+y+2-y^3-8\)

\(=2y^2+y-6=2y^2+4y-3y-6\)

\(=\left(y+2\right)\left(2y-3\right)\)

riêng câu b mình có sửa đề lại, bn xem có đúng hong nha. Chúc bn hc tốt nhé ^^

14 tháng 12 2018

\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)

\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)

\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)

1b.=2((x+y)+(x+y)(x-y)+(x-y))=2(x2-y2+x+y+x-y)=2(x2-y2+2x)=2x2-2y2+4x

2a.=4xy+4xy+2y=8xy+2y=2y(4x+1)

b.=(3x)2+2.3x.y+y2-(2z)2=(3x+y)2-(2z)2=(3x+y-2z)(3x+y+2z)

c.=x2-x-7x+7=x(x-1)-7(x-1)=(x-1)(x-7)

30 tháng 9 2018

\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

hk tốt

^^

3 tháng 8 2016

Đề phần a sai

3 tháng 8 2016

bạn sử hộ mình

 

7 tháng 7 2018

a)2x(2x-y)+2y(x-2y)=\(4x^2-2xy+2xy-4y^2=4x^2-4y^2.\)

b)\(x\left(x^{n-1}+y^{n-1}\right)-y^{n-1}\left(x-y\right)\)=\(x^n+y^n-y^n+y^n=x^n+y^n\)