Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1+\dfrac{sin^2a}{cos^2a}\right).cos^2a-\left(1+\dfrac{cos^2a}{sin^2a}\right).sin^2a\)
\(=\dfrac{\left(sin^2a+cos^2a\right)}{cos^2a}.cos^2a-\left(\dfrac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)
\(=1-1=0\)
a) khai triển được 2sin2+2cos2=2(sin2+cos2=2.1=2
b)cot2-cos2.cot2=cot2(1-cos2)=cot2.sin2=cos2/sin2.sin2=cos2
c)sin.cos(tan+cot)=sin.cos.tan+sin.cos.cot=sin.cos.sin/cos+sin.cos.cos/sin=sin2+cos2=1
d)tan2-tan2.sin2=tan2(1-sin2)=tan2.cos2=sin2/cos2.cos2=sin2
\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\\ VT=\dfrac{sin^2a+2sinacosa+cos^2a-sin^2a+2sinacosa-cos^2a}{sinacosa}\\ =\dfrac{4sinacosa}{sinacosa}=4=VP\)
a: \(S=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)
b: \(VP=\dfrac{1+sin2a-1+sin2a}{\dfrac{1}{2}\cdot sin2a}=\dfrac{2\cdot sin2a}{\dfrac{1}{2}\cdot sin2a}=4=VT\)
a) ta có : \(sin\alpha.cos\alpha\left(tan\alpha+cot\alpha\right)=sin\alpha.cos\alpha\left(\dfrac{sin\alpha}{cos\alpha}+\dfrac{cos\alpha}{sin\alpha}\right)\)
\(=sin^2\alpha+cos^2\alpha=1\)
b) ta có : \(\left(sin^2\alpha+cos^2\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(=1^2+1-2sin\alpha.cos=2\left(1-2sin\alpha.cos\alpha\right)\)
c) ta có : \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)\)
\(=\dfrac{sin^2\alpha}{cos^2\alpha}.cos^2\alpha=sin^2\alpha\)
\(a,1-sin^2\alpha=cos^2\alpha\)
\(b,\left(1-cos\alpha\right)\left(1+cos\alpha\right)=1-cos^2\alpha=sin^2\alpha\)
\(c,1+sin^2\alpha+cos^2\alpha=1+1=2\)
\(d,sin\alpha-sin\alpha.cos^2\alpha=sin\alpha.\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)
\(e,sin^2\alpha+cos^2\alpha+2sin^2\alpha.cos^2\alpha\)
\(=1+2sin^2\alpha.cos^2\alpha\)
Lời giải:
Gọi biểu thức trên là $P$. Ta có:
$P=(1+\frac{\sin ^2a}{\cos ^2a})(1-\sin ^2a)-(1+\frac{\cos ^2a}{\sin ^2a})(1-\cos ^2a)$
$=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}.\cos ^2a-\frac{\sin ^2a+\cos ^2a}{\sin ^2a}.\sin ^2a$
$=(\sin ^2a+\cos ^2a)-(\sin ^2a+\cos ^2a)$
$=0$
viết lại cái đề ( tự viết hjhj )
\(C=\left(\frac{\cos^2\alpha}{\cos^2\alpha}+\frac{\sin^2\alpha}{\cos^2\alpha}\right).\sin^2\alpha+\left(\frac{\sin^2\alpha}{\sin^2\alpha}+\frac{\cos^2\alpha}{\sin^2\alpha}\right).\sin^2\alpha\)
\(=\frac{1}{\cos^2\alpha}.\sin^2\alpha+\frac{1}{\sin^2\alpha}.\sin^2\alpha=\frac{\sin^2\alpha}{\cos^2\alpha}+1\)
=\(=\frac{1}{\cos^2\alpha}\)