Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{ab}\)
b) Giống câu a ?
c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)
\(=\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\sqrt{\frac{4b}{a}}+\sqrt{\frac{1}{ab}}\right):\left(\frac{ab+2b-a+1}{ab}\right)\)
\(=\frac{ab-a+2b+1}{\sqrt{ab}}\cdot\frac{ab}{ab+2b-a+1}\)
\(=\sqrt{ab}\)
a/
\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)
b/
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
a) \(A=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
\(A=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\frac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}\)
\(A=\frac{\sqrt{3}+1}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\frac{5+3\sqrt{5}}{\sqrt{5}}\)
\(A=1\)
b) Ta có:
\(B=\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\) ( x >= 0, x khác 9 )
\(B=\frac{3+\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{3+\sqrt{x}+3\sqrt{x}-x+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{3+\sqrt{x}+3\sqrt{x}+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{\left(3+\sqrt{x}\right)+3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{4\left(3+\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{4}{3-\sqrt{x}}\)
Để B > A
\(\Rightarrow\frac{4}{3-\sqrt{x}}>1\)
\(\Rightarrow4>3-\sqrt{x}\)
\(\Rightarrow4-3+\sqrt{x}>0\)
\(\Rightarrow1+\sqrt{x}>0\)
\(\Rightarrow\sqrt{x}>-1\)
\(\Rightarrow x>1\)
a) A=\(\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}+\frac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}+\left(\sqrt{5}+3\right)-\left(\sqrt{5}+3\right)\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}+0=1\)
b) B=\(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)
\(=\frac{3+\sqrt{x}+\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}+\frac{x+9}{9-x}\)
\(=\frac{3+\sqrt{x}+3\sqrt{x}-x}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}+\frac{x+9}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}\)
\(=\frac{4\text{}\sqrt{x}+12}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}\)
\(=\frac{4\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(=\frac{4}{3-\sqrt{x}}\)
\(B>A \Leftrightarrow\frac{4}{3-\sqrt{x}}>1\)
các giá trị của x là \(\left\{x\in R\backslash0\le x\le9\right\}\)
\(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}\)
=\(\frac{a+b+2\sqrt{ab}+a+b-2\sqrt{ab}}{a-b}=\frac{2\left(a+b\right)}{a-b}\)
b/\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
=\(\sqrt{a}+\sqrt{b}-\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)=\(\frac{a+b+2\sqrt{ab}+a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}=\frac{2a+2b+3\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)