K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Ta có biểu thức B=\(\left(1+\dfrac{1}{2}\right).\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{4}\right).....\left(1+\dfrac{1}{10}\right)\)

B=\(\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}........\dfrac{11}{10}\)

B=\(\dfrac{11}{2}\)(khử hết)

Chúc bạn học tốt!

15 tháng 3 2017

thanks bạn

31 tháng 3 2020

\(B=\left(\frac{3}{5}\right)^2\cdot5^2-\left(2\frac{1}{4}\right)^3:\left(\frac{3}{4}\right)^3+\frac{1}{2}\)

\(B=\left(\frac{3}{5}\cdot5\right)^2-\left(\frac{9}{4}:\frac{3}{4}\right)^3+\frac{1}{2}\)

\(B=3^2-\left(\frac{9}{4}\cdot\frac{4}{3}\right)^3+\frac{1}{2}\)

\(B=3^2-3^3+\frac{1}{2}=-18+\frac{1}{2}=-\frac{35}{2}\)

11 tháng 3 2017

\(B=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{9}\right)\left(1+\frac{1}{10}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{10}{9}\cdot\frac{11}{10}\)

\(=\frac{3.4.5.....10.11}{2.3.4....10}=\frac{11}{2}\)

11 tháng 3 2017

cảm ơn anh

11 tháng 9 2016

\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)

\(A=\frac{3+1}{3}.\frac{8+1}{8}.\frac{15+1}{15}...\frac{n^2+2n+1}{n^2+2n}\)

\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{\left(n+1\right)^2}{n^2+2n}\)

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)

\(A=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)

\(A=\left(n+1\right).\frac{2}{n+2}=\frac{2.\left(n+1\right)}{n+2}\)

11 tháng 9 2016

Ta có : \(1+\frac{1}{k^2+2k}=\frac{k^2+2k+1}{k^2+2k}=\frac{\left(k+1\right)^2}{k\left(k+2\right)}\) với k thuộc N*

Áp dụng với k = 1,2,3,....,n được : 

\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)

\(=\frac{\left(1+1\right)^2}{1.\left(1+2\right)}.\frac{\left(2+1\right)^2}{2.\left(2+2\right)}.\frac{\left(3+1\right)^2}{3.\left(3+2\right)}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)

\(=\frac{\left[2.3.4...\left(n+1\right)\right]^2}{1.2.3...n.3.4.5...\left(n+2\right)}=\frac{\left[\left(n+1\right)!\right]^2}{n!.\frac{\left(n+2\right)!}{2}}\)

20 tháng 7 2018

\(A=\left(-2\right)\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{214}\right)\)

\(=2.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{215}{214}=215\)

\(B=\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)....\left(-1\frac{1}{299}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{300}{299}=\frac{300}{2}=150\)

\(C=-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{333333}{424242}\right)\)

\(=-\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(=-\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)

\(=-\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(=-\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(=-\frac{231}{4}.\frac{4}{21}=-11\)

18 tháng 11 2015

A= \(\left(\frac{3}{4}\right)\left(\frac{8}{9}\right)\left(\frac{15}{16}\right)......\left(\frac{\left(n-1\right)\left(n+1\right)}{n.n}\right)\)

\(=\frac{3.8.15....\left(n-1\right)\left(n+1\right)}{\left(2.3.4......n\right)\left(2.3.4.......n\right)}=\frac{1.3.2.4.3.5.......\left(n-1\right)\left(n+1\right)}{\left(2.3.4.....n\right)\left(2.3.4..................n\right)}=\frac{\left(1.2.3.......\left(n-1\right)\right)\left(3.4.5........\left(n+1\right)\right)}{\left(2.3.4.....n\right)\left(2.3.4...........n\right)}\)

\(=\frac{1.\left(n+1\right)}{n.2}=\frac{n+1}{2n}\)

18 tháng 11 2015

mình chỉ tick cho những người giải thôi, không chấp nhận trường hợp xin tick, và cấm tình trạng spam bậy. Nếu ai giải được thì mình tick, nếu ai không giải, xin tick, hay spam để kiếm điểm hỏi đáp thì miễn.