Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)
= \(\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)
= \(x^4+4x^2+4-x^4+16\)
= \(4x^2+20\)
b) \(\left(x+2y\right)^2-\left(x-2y\right)^2\)
= \(\left(x+2y-x+2y\right)\left(x+2y+x-2y\right)\)
= \(4y\cdot2x=8xy\)
\(15\left(2a^2-1\right)+5\left(3-\frac{1}{5a}-6a^2\right)\)
\(=30a^2-15+15-\frac{1}{a}-30a^2\)
\(=-\frac{1}{a}\)
tại \(a=2017\)=> M= \(\frac{-1}{a}=\frac{-1}{2017}\)
\(\left(x-y\right)\left(x^2+xy+y^2\right)+y^3\)
\(=x^3-y^3+y^3\)
\(=x^3\)
ại \(x=2\)=> N= \(x^3=2^3=8\)
\(A=x^{n-2}\left(x^2-1\right)-x\left(x^{n-1}-x^{n-3}\right)\)
\(\Rightarrow A=x^n-x^{n-2}-x^n+x^{n-2}\)
\(\Rightarrow A=0\)
Làm rồi đó nha
1) (x-3)(x2+6x+9) = x3+6x2+9x-3x2-18x-27 = x3+3x2-9x-27
2) n ở đâu bạn?
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)
Dáu "=" xảy ra \(\Leftrightarrow\) \(x=y=z=1\)
a,b,c,d > 0 ta có:
- a < b nên a.c < b.c
- c < d nên c.b < d.b
Áp dụng tính chất bắc cầu ta được: a.c < b.c < b.d hay a.c < b.d (đpcm)
xn-1(x+y)-y(xn-1+yn-1)
=xn-1+1+xn-1y-xn-1y-yn-1+1
=xn+xn-1y-xn-1y-yn
=xn-yn