Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{12}-3\sqrt{75}+0,5\sqrt{\left(-6\right)^2\cdot3}\)
\(=2\sqrt{3}-15\sqrt{3}+0,5\sqrt{108}\)
\(=-13\sqrt{3}+3\sqrt{3}\)
\(=-10\sqrt{3}\)
b) \(3\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{4+2\sqrt{3}}\)
\(=3\left|\sqrt{2}-\sqrt{3}\right|-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=3\left(\sqrt{3}-\sqrt{2}\right)-\left|\sqrt{3}+1\right|\)
\(=3\sqrt{3}-3\sqrt{2}-\sqrt{3}-1\)
\(=2\sqrt{3}-3\sqrt{2}-1\)
c) \(\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\div\frac{1}{x-2\sqrt{x}+1}\)
\(=\frac{2x+1-\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)
\(=\sqrt{x}-1\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\ne1\end{cases}\Rightarrow}\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}}\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\frac{3\left(\sqrt{x}-1\right)}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(b,M< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\)
\(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\)\(\Rightarrow\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{2\left(\sqrt{x}+1\right)}< 0\)
\(\Rightarrow\frac{2\sqrt{x}-1-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)\(\Rightarrow\frac{\sqrt{x}-2}{2\left(\sqrt{x}+1\right)}< 0\)
Vì \(2\left(\sqrt{x}+1\right)>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\)
\(\Rightarrow\sqrt{x}>\sqrt{4}\Leftrightarrow x>4\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)
\(M=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{x-1}\)
\(M=\frac{x+\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}\right)^2-1^2}-\frac{6\sqrt{x}-4}{x-1}\)
\(M=\frac{x-2\sqrt{x}+1}{x-1}\)
\(M=\frac{\left(\sqrt{x}-1\right)^2}{x-1}\)
a) \(Q=\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\left(x\ge0;x\ne1\right)\)
\(=-\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-x-\sqrt{x}+x-\sqrt{x}+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{3}{\sqrt{x}+1}\)
b) Để \(Q=-1\)
\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow\sqrt{x}+1=3\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
a/ Ta có: \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
Và: \(x-1=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
=> \(P=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right].\frac{\sqrt{x}+1}{\sqrt{x}}\)
=> \(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
=> \(P=\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}\)
=> \(P=\frac{2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}=\frac{2}{x-1}\)
b/ Thay \(x=\frac{\sqrt{3}}{2+\sqrt{3}}\) => \(P=\frac{2}{\frac{\sqrt{3}}{2+\sqrt{3}}-1}=\frac{2\left(2+\sqrt{3}\right)}{\sqrt{3}-2-\sqrt{3}}\)
=> \(P=-\left(2+\sqrt{3}\right)\)
c/ \(P=\frac{2}{x-1}=-\frac{4}{\sqrt{x}+1}\) <=> \(\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{2}{\sqrt{x}+1}\)
<=> \(\frac{1}{\sqrt{x}-1}=-2\)
<=> \(1=-2\sqrt{x}+2\)
<=> \(2\sqrt{x}=1=>\sqrt{x}=\frac{1}{2}=>x=\frac{1}{4}\)
\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)
_Minh ngụy_
\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )
\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)
_Minh ngụy_
\(P=\frac{2}{\sqrt{x}-1}+\frac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{\sqrt{x^3}-1}\)
\(=\frac{2\left(x+\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{2x+2\sqrt{x}+2+2x-2+x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{5x-8\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(5\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}\)
Với \(x\ge0;x\ne1\), ta có:
\(P=\frac{2}{\sqrt{x}-1}+\frac{2.\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{\sqrt{x^3}-1}\)
\(P=\frac{2.\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}+\frac{2.\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}+\frac{x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{2x+2\sqrt{x}+2+2.\left(x-1\right)+x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{3x-8\sqrt{x}+5+2x-2}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{5x-\sqrt{8x}+3}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{5x-5\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{\left(\sqrt{x}-1\right).\left(5\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}=\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}\)
Vậy với \(x\ge0;x\ne1\) ta có: \(P=\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}\)