Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x.\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x.\left(x^2-16\right)-\left(x^4-1\right)=x^3-16x-x^4+1\)
ý này ko rút gọn được hết đâu.
b) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)
\(=y^4-81-y^4+4=-77\)
c) \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc=a^2+b^2+c^2+2ab-2bc-2ac-a^2+2ac-c^2-2ab+2bc=b^2\)
\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)c\left(a+b+c\right)+c^3\)
\(=a^3+3ab\left(a+b\right)+b^3+3c\left(a+b\right)\left(a+b+c\right)+c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(\text{đ}pcm\right)\)
\(A=\frac{b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3+a^3-3a^2b+3ab^2-b^3}{a^2b-a^2c+b^2c-ab^2+c^2a-bc^2}\)
\(=\frac{-3b^2c+3bc^2-3c^2a+3ca^2-3a^2b+3ab^2}{b^2c-bc^2+c^2a-ac^2+a^2b-ab^2}\)
\(=\frac{-3\left(b^2c-bc^2+c^2a-ca^2+a^2b-ab^2\right)}{b^2c-bc^2+c^2a-ca^2+a^2b-ab^2}=-3\)
\(C=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)
\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)
P/s: bài b sai đề thì pải
Áp dụng hằng đẳng thức dưới dạng
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(\left(a+b+c\right)^3+\left(a-b-c\right)^3=\left(2a\right)^3-3\left(a+b+c\right)\left(a-b-c\right).2a\)
\(\left(b-c-a\right)^3+\left(c-a-b\right)^3=\left(-2a\right)^3-3\left(b-c-a\right)\left(c-a-b\right).\left(-2a\right)\)
\(\Rightarrow\left(a+b+c\right)^3+\left(a-b-c\right)^3+\left(b-c-a\right)^3+\left(c-a-b\right)^3\)
\(=\left(2\right)^3+\left(-2a\right)^3-6a\left[a+\left(b+c\right)\right]\left[a-\left(b+c\right)\right]+6a\left[-a+\left(b-c\right)\right]\left[-a-\left(b-c\right)\right]\)
\(=-6a\left\{a^2-\left(b+c\right)^2-\left[\left(-a\right)^2-\left(b-c\right)^2\right]\right\}\)
\(=-6a\left\{a^2-a^2+\left(b-c\right)^2-\left(b+c\right)^2\right\}\)
\(=-6a\left[b-c+b+c\right]\left[b-c-\left(b+c\right)\right]=-6a.2b.\left(-2c\right)\)
\(=24abc\)
Đặt \(b-c=x,c-a=y,a-b=z\)
\(\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
\(\Rightarrow\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3=3\left(b-c\right)\left(c-a\right)\left(a-b\right)\)(1)
Ta có:
: \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2\left(c-b+b-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2\left(c-b\right)+b^2\left(b-a\right)+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)+\left(a-b\right)\left(c^2-b^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)+\left(a-b\right)\left(c-b\right)\left(c+b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b-c-b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\)(2)
Từ (1) và (2) giá trị biểu thức cần tìm là -3.
Chúc bạn học tốt
a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)
\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)
\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{a-b}{b+c}\)
Đặt a+b=x ; b+c=y ; c+a=z, A=(a+b)3.....
Khi đó A= x3+y3+z3-3xyz= (x+y)3- 3xy(x+y) - 3xyz +z3
= (x+y+z)3- 3z(x+y)(x+y+z)- 3xy(x+y+z)
=(x+y+z)(x2+y2+z2+2xy+2yz+2xz-3xz-3zy-3xy)
= (x+y+z)(x2+y2+z2-xy-yz-xz)
tu day em thay vao nhe