K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

a) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{64}-1\right)\)

\(=\dfrac{3^{64}-1}{2}\)

b) \(\left(a+b+c\right)2+\left(a-b-c\right)2+\left(b-c-a\right)2+\left(c-a-b\right)2\)

\(=2\left[\left(a+b+c\right)+\left(a-b-c\right)+\left(b-c-a\right)+\left(c-a-b\right)\right]\)

\(=2\left(a+b+c+a-b-c+b-c-a+c-a-b\right)\)

\(=2.0\)

\(=0\)

c)\(\left(a+b+c+d\right)2+\left(a+b-c-d\right)2+\left(a+c-b-d\right)2+\left(a+d-b-c\right)2\)

\(=2\left(a+b+c+d+a+b-c-d+a+c-b-d+a+d-b-c\right)\)

\(=2.4a\)

\(=8a\)

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

1 tháng 10 2016

Bài 1 :

(a^2+b^2)(x^2+y^2)=(ax+by)^2 
<=> a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 = a^2x^2 + 2abxy + b^2y^2 
<=> a^2y^2 + b^2x^2 = 2abxy 
<=> a^2y^2 + b^2x^2 - 2abxy = 0 
<=> (ay - bx)^2 = 0 
=> ay - bx = 0 
=> ay = bx 
=> a/x = b/y ( x,y khác 0)

 

 

Bài 2: 

\(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4\cdot3+1=9-12+1=-2\)

6 tháng 9 2021

a. A = (a + b)3 - (a - b)3

A = \(\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

A = (a + b - a + b)\(\left[a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right]\)

A = 2b(a2 + a2 + a2 + 2ab - 2ab + b2 - b2 + b2)

A = 2b(3a2 + b2)

A = 6a2b + 2b3

22 tháng 10 2020

a) Ta có : 2005.2007 = (2006 - 1)(2006 + 1) = 20062 - 12 = 20062 - 1 ( cái khúc này sửa : 2005.2001 thành 2005.2007)

Mà B = 20062

=> 20062 - 1 < 20062 

=> A < B

b) Ta có : B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B =  (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (24 - 1)(24 + 1)(28 + 1)(216 + 1)

                B = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1

Mà C = 232

=> B < C 

c) Tương tự như câu b

14 tháng 7 2017

a) \(\cdot\left(m+n\right)^2-\left(m-n\right)^2+\left(m+n\right)\left(m-n\right)\)

\(=\left(m+n+m-n\right)\left(m+n-m+n\right)+\left(m+n\right)\left(m-n\right)\)

\(=\left(2m\cdot2n\right)+m^2-n^2\)

\(=4mn+m^2-n^2\)

b) \(\left(a+b\right)^2-\left(a-b\right)^2-2a^3\)

\(=\left(a+b+a-b\right)\left(a+b-a+b\right)-2a^3\)

\(=2ab-2a^3\)

c) \(\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(4x^2-1\right)\)

\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)

\(=\left(2x+1+2x-1\right)^2\)

\(=\left(4x\right)^2=16x^2\)

d) \(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)

\(=\left(a+b+c-b-c\right)^2=a^2\)

14 tháng 7 2017

xin lỗi mk ghi sai đề ở bài :d) (a+b+c)^2-2(a+b+c)(b+c)+(b+c)^2

23 tháng 6 2018

b) =(y^2-9)(y^2+9)-(y^4-4)

=y^4-81-y^4+4=-77