K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

a) x (x - y) + y (x - y) = x2 – xy+ yx – y2

= x2 – xy+ xy – y2

= x2 – y2

b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn

= xn + xn – 1y - xn – 1y - yn

= xn – yn.



Bài giải:

a) x (x - y) + y (x - y) = x2 – xy+ yx – y2

= x2 – xy+ xy – y2

= x2 – y2

b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn

= xn + xn – 1y - xn – 1y - yn

= xn – yn.



19 tháng 8 2015

a) \(x\left(x-y\right)+y\left(x-y\right)\)

\(=x^2-xy+xy-y^2\)

\(=x^2-y^2\)

b) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}y-x^{n-1}y-y^n\)

\(=x^n-y^n\)

18 tháng 8 2016

xn-1(x+y)-y(xn-1+yn-1)

=x.xn-1+y.xn-1-y.xn-1-y.yn-1

=xn-yn

Vậy xn-1(x+y)-y(xn-1+yn-1)=xn-yn

18 tháng 8 2016

xn-1(x + y) - y(xn-1 + yn-1)

= xn-1+1 + xn-1y - yxn-1 - y1+n-1

= xn - yn

mk chỉ là học sinh lớp 7 nên làm vậy thui k biết có đúng ko

21 tháng 8 2016

x^n-1(x+y)-y(x^n-1+y^n-1)                                 (Mình cách xa từng cái một cho bạn nhìn rõ nha)

=x^n-1+1       +         xy^n-1     -     xy^n-1      -      y^n-1+1

=x^n-1+1           -             y^n-1+1

=x^n  -  y^n

(Cái dòng thứ hai dưới cái đề bài í là nhân hai số có cùng cơ số bạn nhớ chứ)

21 tháng 8 2016

\(=x^{2^{n-1}}+x^{n-1}y-yx^{n-1}+y^{2^{n-1}}\)

\(=x^{2^{n-1}}+y^{2^{n-1}}\)

15 tháng 8 2016

\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)=x^n+y.x^{n-1}-y.x^{n-1}-y^n=x^n-y^n\)

15 tháng 8 2016

\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^{n-1}x+x^{n-1}y-yx^{n-1}-y^{n-1}y\)

\(=x^n-y^n\)

17 tháng 1 2019

tra loi nhanh di ae

a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)

\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)

\(=2x^2-4xy+\dfrac{15}{4}y^2\)

b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)

\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)

\(=2x^2+2x+13-2x^2+2\)

=2x+15

2 tháng 10 2021

a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)

b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)

\(=2x+15\)

23 tháng 7 2020

a) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^{n-1}x+x^{n-1}y-x^{n-1}y-y^{n-1}y\)

\(=x^n-y^n\)

b) \(6x^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)

\(=6x^nx^2-6x^n+2x^33x^{n+1}+2x^3\)

\(=6x^{n+2}-6x^n+6x^{3+n+1}+2x^3\)

\(=6x^{n+2}-6x^n+6x^{n+4}+2x^3\)

Đề có sai ko vậy bạn ???

a) Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y\cdot y^{n-1}\)

\(=x^n-y^n\)

17 tháng 8 2015

\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}y-x^{n-1}y-y^n=x^n-y^n\)

Câu 1: 

\(\dfrac{A}{B}=\dfrac{4x^{n+1}y^2}{3x^3y^{n-1}}=\dfrac{4}{3}x^{n-2}y^{2-n+1}=\dfrac{4}{3}x^{n-2}y^{3-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-2>=0\\3-n>=0\end{matrix}\right.\Leftrightarrow2\le n\le3\)

Bài 2: 

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\left(x-y\right)+3\left(x+y\right)^2}{x+y}\)

\(=x^2-xy+y^2-2\left(x-y\right)+3\left(x+y\right)\)

\(=x^2-xy+y^2-2x+2y+3x+3y\)

\(=x^2-xy+y^2+x+5y\)