\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\cdot...\left(1+\dfrac{1}{2499}\right)\)

\(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot...\cdot\dfrac{2500}{2499}\)

\(=\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot...\cdot\dfrac{50\cdot50}{49\cdot51}\)

\(=\dfrac{2\cdot3\cdot4\cdot...\cdot50}{1\cdot2\cdot3\cdot...\cdot49}\cdot\dfrac{2\cdot3\cdot...\cdot50}{3\cdot4\cdot...\cdot51}\)

\(=\dfrac{50}{1}\cdot\dfrac{2}{51}=\dfrac{100}{51}\)

8 tháng 5 2017

\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

Vậy T = 50

8 tháng 5 2017

\(T=\left(\dfrac{1}{2}+1\right)\cdot\left(\dfrac{1}{3}+1\right)\cdot\left(\dfrac{1}{4}+1\right)\cdot...\cdot\left(\dfrac{1}{98}+1\right)\cdot\left(\dfrac{1}{99}+1\right)\)

\(=\left(\dfrac{1}{2}+\dfrac{2}{2}\right)\cdot\left(\dfrac{1}{3}+\dfrac{3}{3}\right)\cdot\left(\dfrac{1}{4}+\dfrac{4}{4}\right)\cdot...\cdot\left(\dfrac{1}{98}+\dfrac{98}{98}\right)\cdot\left(\dfrac{1}{99}+\dfrac{99}{99}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{99}{98}\cdot\dfrac{100}{99}\)

\(=\dfrac{3\cdot4\cdot5\cdot...\cdot99\cdot100}{2\cdot3\cdot4\cdot...\cdot98\cdot99}\)

\(=\dfrac{100}{2}=50\).

6 tháng 3 2017

\(D=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{2015}\right)\)

\(D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2014}{2015}=\dfrac{1.2.3....2014}{2.3.4....2015}\)

\(D=\dfrac{1}{2015}\)

6 tháng 3 2017

\(D=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2015}\right)\)

\(D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2014}{2015}=\dfrac{1.2.3...2014}{2.3.4...2015}\)

\(D=\dfrac{1}{2015}\)

Tính giá trị biểu thức : 1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\) 2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\) 3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\) 4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\) 5....
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)

2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)

4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)

5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)

7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)

9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)

10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)

11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)

12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)

13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)

14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)

15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)

16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)

2
27 tháng 11 2017

1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)

3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)

4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)

29 tháng 4 2022

hôi lì sít

a: \(=\dfrac{157}{8}\cdot\dfrac{12}{7}-\dfrac{61}{4}\cdot\dfrac{12}{7}\)

\(=\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{122}{8}\right)\)

\(=\dfrac{12}{7}\cdot\dfrac{35}{8}=5\cdot\dfrac{3}{2}=\dfrac{15}{2}\)

b: \(=\dfrac{2}{15}-\dfrac{2}{15}\cdot5+\dfrac{3}{15}\)

\(=\dfrac{1}{3}-\dfrac{2}{3}=-\dfrac{1}{3}\)

c: \(=\left(\dfrac{10}{3}+\dfrac{5}{2}\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{11}{31}\)

\(=\dfrac{35}{6}:\dfrac{-31}{30}-\dfrac{11}{31}\)

\(=\dfrac{35}{6}\cdot\dfrac{30}{-31}-\dfrac{11}{31}\)

\(=\dfrac{-35\cdot5-11}{31}=\dfrac{-186}{31}=-6\)

7 tháng 5 2018

1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)

\(B< 1\)

2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)

\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)

\(B=\dfrac{1}{20}\)

3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)

\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)

\(A=11\)

4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)

Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)

\(\Rightarrow B>A\)

Tính nhanh theo mẫu: Mẫu: \(B=\left(1+\dfrac{1}{3}\right)\)x \(\left(1+\dfrac{1}{8}\right)\)x \(\left(1+\dfrac{1}{15}\right)\)x \(\left(1+\dfrac{1}{24}\right)\)x ..... x \(\left(1+\dfrac{1}{120}\right)\)x \(\left(1+\dfrac{1}{413}\right)\) \(B=\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\)x \(\left(\dfrac{8}{8}+\dfrac{1}{8}\right)\)x \(\left(\dfrac{15}{15}+\dfrac{1}{15}\right)\)x \(\left(\dfrac{24}{24}+\dfrac{1}{24}\right)\)x........x\(\left(\dfrac{120}{120}+\dfrac{1}{120}\right)\)x...
Đọc tiếp

Tính nhanh theo mẫu:

Mẫu: \(B=\left(1+\dfrac{1}{3}\right)\)x \(\left(1+\dfrac{1}{8}\right)\)x \(\left(1+\dfrac{1}{15}\right)\)x \(\left(1+\dfrac{1}{24}\right)\)x ..... x \(\left(1+\dfrac{1}{120}\right)\)x \(\left(1+\dfrac{1}{413}\right)\)

\(B=\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\)x \(\left(\dfrac{8}{8}+\dfrac{1}{8}\right)\)x \(\left(\dfrac{15}{15}+\dfrac{1}{15}\right)\)x \(\left(\dfrac{24}{24}+\dfrac{1}{24}\right)\)x........x\(\left(\dfrac{120}{120}+\dfrac{1}{120}\right)\)x \(\left(\dfrac{143}{143}+\dfrac{1}{143}\right)\)

\(B=\dfrac{4}{3}\)x\(\dfrac{9}{8}\)x\(\dfrac{16}{15}\)x\(\dfrac{25}{24}\)x.......x\(\dfrac{121}{120}\)x \(\dfrac{144}{143}\)

\(B=\dfrac{2x2}{1x3}\)x\(\dfrac{3x3}{2x4}\)x\(\dfrac{4x4}{3x5}\)x\(\dfrac{5x5}{4x6}\)x.......x\(\dfrac{11x11}{10x12}\)x\(\dfrac{12x12}{13x11}\)

\(B=\dfrac{2x3x4x5x......x10x11x12}{1x2x3x......x10x11x12}\)x \(\dfrac{2x3x4x5x....x11x12}{3x4x5x6x......x12x13}\)

B= \(\dfrac{12}{1}\)x\(\dfrac{2}{13}\)

B=\(\dfrac{24}{13}\)

Câu hỏi:

\(B=\left(1+\dfrac{1}{8}\right)\)x\(\left(1+\dfrac{1}{15}\right)\)x\(\left(1+\dfrac{1}{24}\right)\)x..... x \(\left(1+\dfrac{1}{440}\right)\)x \(\left(1+\dfrac{1}{483}\right)\)

3
24 tháng 6 2017

\(B=\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\left(1+\dfrac{1}{24}\right).....\left(1+\dfrac{1}{440}\right)\left(1+\dfrac{1}{483}\right)\)

\(B=\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}.....\dfrac{441}{440}.\dfrac{484}{483}\)

\(B=\dfrac{9.16.25.....441.484}{8.15.24.....440.483}\)

\(B=\dfrac{3.3.4.4.5.5.....21.21.22.22}{2.4.3.5.4.6.....20.22.21.23}\)

\(B=\dfrac{3.4.5.....21.22}{2.3.4.....20.21}.\dfrac{3.4.5.....21.22}{4.5.6.....22.23}\)

\(B=11.\dfrac{3}{23}=\dfrac{33}{23}\)

24 tháng 6 2017

B = \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}...\dfrac{121}{120}.\dfrac{144}{143}\)

B = \(\dfrac{4.9.16.25...121.144}{3.8.15.24....120.143}\)

B = \(\dfrac{2.2.3.3.4.4.5.5...11.11.12.12}{1.3.2.4.3.5.4.6...10.12.11.13}\)

B = \(\dfrac{2.3.4.5...11.12}{1.2.3.4.5...10.11}.\dfrac{2.3.4.5...11.12}{3.4.5.6.7...12.13}\)

B = 12 . \(\dfrac{2}{13}\)

B = \(\dfrac{24}{13}\)

30 tháng 3 2018

b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)

Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhéhaha

30 tháng 3 2018

cảm ơn bạn

a: \(=\dfrac{5\cdot\left(8-6\right)}{10}=\dfrac{5\cdot2}{10}=1\)

b: \(\dfrac{\left(-4\right)^2}{5}=\dfrac{16}{5}\)

\(B=\dfrac{3}{7}-\dfrac{1}{5}-\dfrac{3}{7}=-\dfrac{1}{5}\)

c: \(C=\left(6-2.8\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)

\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}\)

\(=5\cdot2-\dfrac{32}{5}=10-\dfrac{32}{5}=\dfrac{18}{5}\)

d: \(D=\left(\dfrac{-5}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)

\(=\dfrac{27}{24}\cdot\dfrac{-8}{17}=\dfrac{-9}{8}\cdot\dfrac{8}{17}=\dfrac{-9}{17}\)

18 tháng 5 2017

a) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}+\dfrac{1}{195}\)

\(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-.....+\dfrac{1}{13}-\dfrac{1}{15}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{15}\right)\)

\(=\dfrac{1}{2}.\dfrac{4}{15}=\dfrac{2}{15}\)

b) \(\dfrac{4}{9}:\left(-\dfrac{1}{7}\right)+6\dfrac{5}{9}:\left(-\dfrac{1}{7}\right)\)

\(=\dfrac{4}{9}.\left(-7\right)+\dfrac{59}{9}\left(-7\right)\)

\(=-7\left(\dfrac{4}{9}+\dfrac{59}{9}\right)\)

\(=-7.7=-49\)

c) \(\left(3\dfrac{2}{5}-2\dfrac{2}{5}\right).\left(-\dfrac{5}{3}\right)+3.\left(2\dfrac{1}{2}:\dfrac{1}{2}\right)\)

\(=\left(\dfrac{17}{5}-\dfrac{12}{5}\right).\left(-\dfrac{5}{3}\right)+3.5\)

\(=-\dfrac{5}{3}+15=13\dfrac{1}{3}\)

d) \(1\dfrac{13}{5}.\left(0,5\right)^2.3+\left(\dfrac{8}{15}+1\dfrac{19}{60}\right):1\dfrac{23}{24}\)

\(=\dfrac{2}{7}+78\dfrac{8}{15}:\dfrac{47}{24}\)

( bạn tự tính nốt câu này nha ! )