K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2021

`A=(-7sqrtx+6)/(x-4)+sqrtx/(sqrtx-2)`

`=(-7sqrtx+6)/(x-4)+(x+2sqrtx)/(x-4)`

`=(x+2sqrtx-7sqrtx+6)/(x-4)`

`=(x-5sqrtx+6)/(x-4)`

`=((sqrtx-2)(sqrtx-3))/((sqrtx-2)(sqrtx+2))`

`=(sqrtx-3)/(sqrtx+2)`

a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{2}{3}\)

 

7 tháng 5 2022

mik cần gấp ạ^^

 

NV
23 tháng 12 2022

ĐKXĐ: \(x>0;x\ne9\)

\(P=\left(\dfrac{x+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right)\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x+7-4\sqrt{x}-4+\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right)\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right).\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}.\dfrac{\left(\sqrt{x}+6\right)}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}+1}\)

b.

Ta có \(P=\dfrac{\sqrt{x}+1+5}{\sqrt{x}+1}=1+\dfrac{5}{\sqrt{x}+1}\)

Do \(\sqrt{x}+1>0\Rightarrow\dfrac{5}{\sqrt{x}+1}>0\Rightarrow P>1\)

\(P=\dfrac{6\left(\sqrt{x}+1\right)-5\sqrt{x}}{\sqrt{x}+1}=6-\dfrac{5\sqrt{x}}{\sqrt{x}+1}\)

Do \(\left\{{}\begin{matrix}5\sqrt{x}>0\\\sqrt{x}+1>0\end{matrix}\right.\) ;\(\forall x>0\Rightarrow\dfrac{5\sqrt{x}}{\sqrt{x}+1}>0\)

\(\Rightarrow P< 6\Rightarrow1< P< 6\)

Mà P nguyên \(\Rightarrow P=\left\{2;3;4;5\right\}\)

- Để \(P=2\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=2\Rightarrow\sqrt{x}+6=2\sqrt{x}+2\Rightarrow x=16\)

- Để \(P=3\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=3\Rightarrow\sqrt{x}+6=3\sqrt{x}+3\Rightarrow\sqrt{x}=\dfrac{3}{2}\Rightarrow x=\dfrac{9}{4}\)

- Để \(P=4\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=4\Rightarrow\sqrt{x}+6=4\sqrt{x}+4\Rightarrow\sqrt{x}=\dfrac{2}{3}\Rightarrow x=\dfrac{4}{9}\)

- Để \(P=5\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=5\Rightarrow\sqrt{x}+6=5\sqrt{x}+5\Rightarrow\sqrt{x}=\dfrac{1}{4}\Rightarrow x=\dfrac{1}{16}\)

1: Ta có: \(A=\left(\dfrac{\sqrt{x}}{2-\sqrt{x}}+\dfrac{\sqrt{x}}{2+\sqrt{x}}\right)-\dfrac{\sqrt{x}+6}{4-x}\)

\(=\dfrac{2\sqrt{x}+x+2\sqrt{x}-x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\dfrac{\sqrt{x}+6}{\left(2-\sqrt{x}\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{-3}{\sqrt{x}+2}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

18 tháng 10 2023

1) \(A=\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)^2-2\)

\(A=\sqrt{x}\cdot\sqrt{x}+\sqrt{x}-\left(x-2\sqrt{x}+1\right)-2\)

\(A=x+\sqrt{x}-\left(x-2\sqrt{x}+1\right)-2\)

\(A=x+\sqrt{x}-x+2\sqrt{x}-1-2\)

\(A=3\sqrt{x}-3\)

Thay \(x=9\) vào A ta có:

\(A=3\cdot\sqrt{9}-3=3\cdot3-3=9-3=6\)

18 tháng 10 2023

giúp mik làm câu 2 với ah

26 tháng 7 2021

đk \(\left\{{}\begin{matrix}x\ne1\\x>0\end{matrix}\right.\)

A= \(\dfrac{-x\left(1+\sqrt{x}\right)}{\sqrt{x}\left(1-x\right)}\)+\(\dfrac{3\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-x\right)\sqrt{x}}\)+\(\dfrac{\left(6\sqrt{x}-4\right)\sqrt{x}}{\left(1-x\right)\sqrt{x}}\)

=\(\dfrac{-x-x\sqrt{x}+3\sqrt{x}-3x+6x-4\sqrt{x}}{\left(1-x\right)\sqrt{x}}\)

=\(\dfrac{-\left(x-2\sqrt{x}=1\right)}{1-x}\)=-\(\dfrac{\left(\sqrt{x}-1\right)^2}{1-x}\)=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3\sqrt{x}}{x+\sqrt{x}}+\dfrac{6\sqrt{x}-4}{1-x}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

12 tháng 11 2021

5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)

11 tháng 6 2021

a) ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) Để \(P< \dfrac{1}{2}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}< \dfrac{1}{2}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Rightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\sqrt{x}+2}< 0\Rightarrow\dfrac{\sqrt{x}-3}{2\sqrt{x}+2}< 0\)

mà \(2\sqrt{x}+2>0\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\)

\(\Rightarrow0\le x< 9\left(x\ne1\right)\)