Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 3179=a; 1111=b
\(K=2\dfrac{1}{a}\cdot\dfrac{3}{b}-\dfrac{a-1}{a}\cdot\dfrac{1}{b}-\dfrac{4}{a\cdot b}\)
\(=\dfrac{2a+1}{a}\cdot\dfrac{3}{b}-\dfrac{a-1}{ab}-\dfrac{4}{ab}\)
\(=\dfrac{6a+3-a+1-4}{ab}\)
\(=\dfrac{4a}{ab}=\dfrac{4}{b}=\dfrac{4}{1111}\)
B = 1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
B = 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
B = 1 - 1/7
B = 6/7
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
a, Ta có:
\(999^4+999=999\left(999^3+1^3\right)\)
Đây là 1 hằng đẳng thức nên :
\(=999\left(999+1\right)\left(999^2-999+1\right)\)
\(=999.1000.\left(999^2-999+1\right)⋮1000\)
=>ĐPCM.
b , \(\left(x^2+2.\dfrac{5}{2}.x+\left(\dfrac{5}{2}\right)^2\right)+\dfrac{3}{4}\)
\(=>\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
=> Ta có ĐPCM...
1: \(A=4\dfrac{7}{1000}\cdot\dfrac{1}{999}-1\dfrac{1}{500}\cdot\dfrac{4}{999}+\dfrac{1001}{999\cdot1000}\)
Đặt 1/1000=a; 1/999=b
\(A=\left(4+7a\right)\cdot b-\left(1+2a\right)\cdot4b+b\cdot\dfrac{1001}{1000}\)
\(=4b+7ab-4b-8ab+b\cdot\left(1+a\right)\)
=-ab+b+b+ba=2b=2/999
2: Đặt 1/4587=a;1/3897=b
\(B=a\cdot\left(7+b\right)-\left(3+1-a\right)\cdot2b-7a-3ab\)
=7a+ab-8a+2ab-7a-3ab
=-8a=-8/4587