Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 2\(\sqrt{3.16}\)+\(\sqrt{3.9}\)+\(\sqrt{3}\)
=2.4.\(\sqrt{3}\)+3\(\sqrt{3}\)+\(\sqrt{3}\)
12\(\sqrt{3}\)
\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(8+\sqrt{5}\right)\\ =\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}-1\right)\left(8+\sqrt{5}\right)\\ =\sqrt{6-2\sqrt{5}}\left(\sqrt{5}-1\right)\left(8+\sqrt{5}\right)\\ =\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}-1\right)\left(8+\sqrt{5}\right)\\ =\left(\sqrt{5}-1\right)^2\left(8+\sqrt{5}\right)\\ =\left(6-2\sqrt{5}\right)\left(8+\sqrt{5}\right)\)
Thấy lạ ._. Bạn xem lại thử đề có đúng k giúp mình nhé!
\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}}=\sqrt{\left(3^2\right)-\left(\sqrt{5+2\sqrt{3}}\right)^2}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-2-\sqrt{2}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{4-2}=\sqrt{2}.\sqrt{2}=2\)
\(C=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}=\sqrt{2+\sqrt{3}}.\sqrt{2^2-\left(2+\sqrt{3}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)
\(D=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4^2-15}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
\(E=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)
\(=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)
\(=\sqrt{2}.\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)
Ta có: \(\sqrt{4\sqrt{2}+4\sqrt{10-8\sqrt{3-2\sqrt{2}}}}\)
\(=\sqrt{4\sqrt{2}+4\sqrt{10-8\sqrt{2-2\sqrt{2}\cdot1+1}}}\)
\(=\sqrt{4\sqrt{2}+4\sqrt{10-8\sqrt{\left(\sqrt{2}-1\right)^2}}}\)
\(=\sqrt{4\sqrt{2}+4\sqrt{10-8\left|\sqrt{2}-1\right|}}\)
\(=\sqrt{4\sqrt{2}+4\sqrt{10-8\left(\sqrt{2}-1\right)}}\)(Vì \(\sqrt{2}>1\))
\(=\sqrt{4\sqrt{2}+4\sqrt{10-8\sqrt{2}+8}}\)
\(=\sqrt{4\sqrt{2}+4\sqrt{18-8\sqrt{2}}}\)
\(=\sqrt{4\sqrt{2}+4\sqrt{16-2\cdot4\cdot\sqrt{2}+2}}\)
\(=\sqrt{4\sqrt{2}+4\sqrt{\left(4-\sqrt{2}\right)^2}}\)
\(=\sqrt{4\sqrt{2}+4\left|4-\sqrt{2}\right|}\)
\(=\sqrt{4\sqrt{2}+4\left(4-\sqrt{2}\right)}\)(Vì \(4>\sqrt{2}\))
\(=\sqrt{4\sqrt{2}+16-4\sqrt{2}}\)
\(=\sqrt{16}=4\)
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
a) (√8 - 3√2 + √10)√2 - √5
= (√22.2 - 3√2 + √5.2)√2 - √5
= (2√2 - 3√2 + √5.√2)√2 - √5
= (2 - 3 + √5)√2.√2 - √5
= (-1 + √5).2 - √5
= -2 + 2√5 - √5
= -2 + √5
b) 0,2√((-10)2.3) + 2√(√3 - √52)
= 0,2.10√3 + 2|√3 - √5|
= 2√3 + 2(√5 - √3)
= 0,2.10.√3 + 2|√3 - √5|
= 2√3 + 2(√5 - √3)
= 2√3 + 2√5 - 2√3
= 2√5
a: \(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(=\dfrac{\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}}{\sqrt{2}}\)
\(=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)