K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 6 2020

\(A=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}+sina+cosa\)

\(=1+sina.cosa+sina+cosa\)

\(=\left(sina+1\right)\left(cosa+1\right)\)

1 tháng 4 2019

ĂN CHO CÒN NÓNG:NGON.vui

31 tháng 5 2020

Hỏi đáp Toán

23 tháng 7 2018

ta có : \(sin^3a+cos^3a=\left(sina+cosa\right)^3-3sina.cosa\left(sina+cosa\right)\)

\(=2^3-3sina.cosa\left(2\right)=8-6sina.cosa\)

\(=11-3sin^2a-6sina.cosa-3cos^2a=11-3\left(sin+cos\right)^2=11-3.2^2=11-12=-1\)

sina.cosa=1 => sina,cosa≠0 => sina+cosa≠0

\(P=\frac{\sin^3a+\cos^3a}{\sin a+\cos a}=\frac{\left(\sin a+\cos a\right).\left(\sin^2a-\sin a.\cos a+\cos^2a\right)}{\sin a+\cos a}\)

\(=\sin^2a+\cos^2a-\sin a.\cos a=1-1=0\)

20 tháng 11 2022

\(tana=\sqrt{3}\)

nên \(\dfrac{sina}{cosa}=\sqrt{3}\)

=>\(sina=\sqrt{3}\cdot cosa\)

=>a=60 độ

\(A=\dfrac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina\cdot cosa\right)}{sina-cosa}\)

\(=1+sina\cdot cosa=1+\dfrac{1}{2}sin2a\)

\(=1+\dfrac{1}{2}\cdot sin120=\dfrac{4+\sqrt{3}}{4}\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Lời giải:

\((1+\cot a)\sin ^3a+(1+\tan a)\cos ^3a\)

\(=(1+\frac{\cos a}{\sin a})\sin ^3a+(1+\frac{\sin a}{\cos a})\cos ^3a\)

\(=(\sin a+\cos a)\sin ^2a+(\cos a+\sin a)\cos ^2a\)

\(=(\sin a+\cos a)(\sin ^2a+\cos ^2a)=(\sin a+\cos a).1=\sin a+\cos a\)

NV
28 tháng 11 2019

\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)

\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)

\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)

\(=1-3sin^2a.cos^2a\)

\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)

\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này

\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)

\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)

\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)

\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)

NV
1 tháng 6 2020

\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+\frac{sin^2x}{cos^2x}=1+tan^2x+tan^2x=1+2tan^2x\)

\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}-sina.cosa\)

\(=sin^2a+cos^2a+sina.cosa-sina.cosa=1\)

\(\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cosx.cos2x}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)

\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=\frac{cos^2a-sin^2a}{cosa+sina}+\frac{cos^2a-sin^2a}{cosa-sina}\)

\(=\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa+sina}+\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa-sina}=cosa-sina+cosa+sina=2cosa\)

\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)