Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có
\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)
\(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)
\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)
a) \(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}=\frac{1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}=\frac{2\sqrt{x}}{x-1}\)( x > 0 ; x ≠ 1 )
b) \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)( x > 0 ; x ≠ 4 )
a) Với \(x>0\)và \(x\ne1\)ta có:
\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1+\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Với \(x>0\)và \(x\ne4\)ta có:
\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)-2\left(\sqrt{x}+2\right)+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)
2/
a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)
b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" khi \(a=b=\frac{1}{4}\)
c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm
Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)
Cộng vế với vế ta được:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)
Dấu "=" khi \(x=y=z\)
d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)
\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)
e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)
\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)
\(tan1^0.tan89^0.tan2^0.tan88^0...tan44^0tan46^0.tan45^0\)
\(=tan1^0.cot1^0.tan2^0.cot2^0...tan44^0.cot44^0.tan45^0\)
\(=1.1.1...1=1\)
b/ Nhân cả tử và mẫu với liên hợp của mẫu và rút gọn ta được:
\(P=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+....-\sqrt{2n}-\sqrt{2n+1}\)
\(=-\sqrt{2}-\sqrt{2n+1}\)