K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a)

\(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

\(=2\sqrt{5}-\sqrt{25}.\sqrt{5}-\sqrt{16}.\sqrt{5}+\sqrt{121}.\sqrt{5}\)

\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=\sqrt{5}(2-5-4+11)=4\sqrt{5}\)

b)

\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=\frac{\sqrt{20}(\sqrt{5}+\sqrt{2})}{\sqrt{5}+\sqrt{2}}+\frac{8(1+\sqrt{5})}{(1-\sqrt{5})(1+\sqrt{5})}\)

\(=\sqrt{20}+\frac{8(1+\sqrt{5})}{1-5}=2\sqrt{5}-2(1+\sqrt{5})=-2\)

23 tháng 9 2018

e cảm ơn cô Akai Haruma

21 tháng 9 2018

Mysterious Person giúp e với! Em cảm ơn!!!

a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)

b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)

c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)

e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)

16 tháng 10 2021

a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)

\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)

\(=11\sqrt{2}\)

b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)

\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)

\(=5\sqrt{5}-1\)

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)

a: \(A=6\sqrt{3}+10\sqrt{3}-12\sqrt{3}=4\sqrt{3}\)

b: \(B=7\sqrt{3}+5\sqrt{3}-12\sqrt{3}=0\)

c: \(=12\sqrt{2}-6+3\left(9-4\sqrt{2}\right)=12\sqrt{2}-6+27-12\sqrt{2}=21\)

d: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)

17 tháng 12 2020

1.

a, \(2\sqrt{18}-4\sqrt{50}-3\sqrt{32}=6\sqrt{2}-20\sqrt{2}-12\sqrt{2}=-2\sqrt{2}\)

b, \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}+3\right)^2}\)

\(=\left|\sqrt{5}-3\right|+\left|\sqrt{5}+3\right|\)

\(=-\sqrt{5}+3+\sqrt{5}+3=6\)

c, \(\dfrac{\sqrt{10}+10}{1+\sqrt{10}}-\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}=\dfrac{\sqrt{10}\left(1+\sqrt{10}\right)}{1+\sqrt{10}}-\dfrac{\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}\)

\(=\sqrt{10}-\sqrt{10}=0\)

2.

ĐK: \(x\in R\)

\(\sqrt{9x^2-30x+25}=5\)

\(\Leftrightarrow\sqrt{\left(3x-5\right)^2}=5\)

\(\Leftrightarrow\left|3x-5\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=5\\3x-5=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=0\end{matrix}\right.\)

Vậy ...

NV
17 tháng 12 2020

Nếu em thấy các câu hỏi do lag mà bị gửi đúp (tức là rất nhiều câu hỏi giống nhau xuất hiện cùng 1 chỗ) thì xóa giúp mình nhé cho đỡ vướng. Nhưng nhớ để lại 1 câu. Cảm ơn em.

5 tháng 7 2021

Bài 1 :

a, ĐKXĐ : \(\dfrac{2x+1}{x^2+1}\ge0\)

\(x^2+1\ge1>0\)

\(\Rightarrow2x+1\ge0\)

\(\Rightarrow x\ge-\dfrac{1}{2}\)

Vậy ...

b, Ta có : \(\sqrt[3]{-27}+\sqrt[3]{64}-\sqrt[3]{-\dfrac{128}{2}}\)

\(=-3+4-\left(-4\right)=-3+4+4=5\)

5 tháng 7 2021

Bài 2 :

\(a,=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)

\(=\sqrt{5}\left(2+6+5-12\right)=\sqrt{2}\)

\(b,=\sqrt{5}+\sqrt{5}+\left|\sqrt{5}-2\right|\)

\(=2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}-2\)

\(c,=\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

\(=\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\)

\(=3\)

26 tháng 6 2023

\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}\\ =\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{2}.\sqrt{4}-\sqrt{2}.\sqrt{5}}{2-\sqrt{5}}\\ =\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}\\ =\dfrac{1}{\sqrt{2}+1}-\sqrt{2}\\ =\dfrac{1-\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\\ =\dfrac{1-2-\sqrt{2}}{\sqrt{2}+1}\\ =\dfrac{-\sqrt{2}-1}{\sqrt{2}+1}\\ =\dfrac{-\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\\ =-1\)

26 tháng 6 2023

\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}=-1+\sqrt{2}-\sqrt{2}=-1\)

Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)

=1