Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Căn bậc hai số học của một số nguyên dương x là a sao cho
\(\left\{{}\begin{matrix}a>0\\a^2=x\end{matrix}\right.\)
Hằng đẳng thức về căn thức là:
\(\sqrt{A^2}=\left|A\right|\)
Quy tắc:
\(\sqrt{A^2\cdot B}=\sqrt{B}\cdot\left|A\right|\)
\(\sqrt{\dfrac{A}{B}}=\dfrac{\sqrt{A}}{\sqrt{B}}\)
\(\sqrt{A\cdot B}=\sqrt{A}\cdot\sqrt{B}\)
a: ĐKXĐ: x-10>=0
=>x>=10
b: \(\sqrt{9a^2b}=\sqrt{\left(3a\right)^2\cdot b}=3a\cdot\sqrt{b}\)
c: \(\left(2\sqrt{3}+1\right)^2=13+4\sqrt{3}\)
\(\left(2\sqrt{2}+\sqrt{5}\right)^2=8+5+2\cdot2\sqrt{2}\cdot\sqrt{5}=13+4\sqrt{10}\)
mà \(4\sqrt{3}< 4\sqrt{10}\left(3< 10\right)\)
nên \(\left(2\sqrt{3}+1\right)^2< \left(2\sqrt{2}+\sqrt{5}\right)^2\)
=>\(2\sqrt{3}+1< 2\sqrt{2}+\sqrt{5}\)
a) ĐKXĐ: \(3x-6\ge0\Leftrightarrow3x\ge6\Leftrightarrow x\ge2\)
b) ĐKXĐ: \(x\ge0\)
\(\sqrt{3x}=3\Leftrightarrow3x=9\Leftrightarrow x=3\left(tm\right)\)
\(\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}=\sqrt{\left(\sqrt{5}-2\right)^2}=\sqrt{5}-2\)Do \(\sqrt{5}>2\)