Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MT1: x – y
MT2: 1
MTC: x – y
NTP1: 1; NTP2: x – y.
Quy đồng:
\(\dfrac{1}{3x+xy}=\dfrac{1}{x\left(y+3\right)}=\dfrac{\left(x+y\right)^2}{x\left(y+3\right)\left(x+y\right)^2}\)
\(2x+2y=2\left(x+y\right)=\dfrac{2\left(x+y\right)\cdot x\left(y+3\right)\left(x+y\right)^2}{x\left(y+3\right)\left(x+y\right)^2}\)
\(\dfrac{1}{x^2+2xy+y^2}=\dfrac{3x+xy}{x\left(y+3\right)\left(x+y\right)^2}\)
a: 1/x^2y=1/x^2y
3/xy=3x/x^2y
b: \(\dfrac{x}{x^2+2xy+y^2}=\dfrac{x}{\left(x+y\right)^2}\)
\(\dfrac{2x}{x^2+xy}=\dfrac{2}{x+y}=\dfrac{2x+2y}{\left(x+y\right)^2}\)
\(\dfrac{x^2-4}{x^2+2x}=\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x-2}{x}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}\)
\(\dfrac{x}{x-2}=\dfrac{x^2}{x\left(x-2\right)}\)
\(\dfrac{1}{3x+3y}=\dfrac{1}{3\left(x+y\right)}=\dfrac{2\cdot\left(x+y\right)}{6\left(x+y\right)^2}\)
\(\dfrac{1}{2x+2y}=\dfrac{1}{2\left(x+y\right)}=\dfrac{3\left(x+y\right)}{6\left(x+y\right)^2}\)
\(\dfrac{1}{x^2+2xy+y^2}=\dfrac{1}{\left(x+y\right)^2}=\dfrac{6}{6\left(x+y\right)^2}\)
Bài 2:
a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)
\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)
MTC: 5x(x – 2y);
NTP 1: x – 2y;
NTP2: 5x
Quy đồng: