Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d,R,r |
(O,R) dựng (O’,r’) | 0 | D<R-r |
(O;R) ở ngoài nhau (O’;r) | 0 | D>R+r |
Tiếp xúc ngoài | 1 | D=R+r |
Tiếp xúc trong | 1 | D=R-r |
Hai đường tròn cắt nhau | 2 | R-r<d<R+r |
Nối (1) và (4): tập hợp các điểm có khoảng cách đến điểm A cố định bằng 2cm là đường tròn tâm A bán kính 2cm.
Nối (2) và (6): Đường tròn tâm A bán kính 2cm gồm tất cả những điểm có khoảng cách đến điểm A bằng 2cm
Nối (3) và (5): Hình tròn tâm A bán kính 2cm gồm tất cả những điểm có khoảng cách đến điểm A nhỏ hơn hoặc bằng 2cm
a) Áp dụng hệ thức lượng trong tam giác vuông⇒32=2x⇒x=\(\dfrac{9}{2}=4,5\)
Áp dụng định lý Pi-ta-go⇒y2=32+x2=9+20,25=29,25⇒\(y=\dfrac{3\sqrt{13}}{2}\)
b) Ta có \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AC=\dfrac{4}{3}.AB=\dfrac{4}{3}.15=20\)
Áp dụng hệ thức lượng trong tam giác vuông ⇒\(\dfrac{1}{x^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{225}+\dfrac{1}{400}=\dfrac{1}{144}\Rightarrow x^2=144\Rightarrow x=12\)Áp dụng hệ thức lượng trong tam giác vuông ⇒AB.AC=x.y⇒\(y=\dfrac{AB.AC}{x}=\dfrac{15.20}{12}=25\)
a) Hình a
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
x2=2.(2+6)=2.8=16 ⇒x=4x2=2.(2+6)=2.8=16⇒x=4
y2=6.(2+6)=6.8=48⇒y=√48=4√3y2=6.(2+6)=6.8=48⇒y=48=43
b) Hình b
Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có:
x2=2.8=16⇒x=4
a)Áp dụng hệ thức lượng trong tam giác ta có:
72 = y(x+y)
52 = x(x+y)
=> (x+y)2=52+72=25+49=74
Do x,y là độ dài cạnh tam giác nên x>0 y>0
=>x+y=\(\sqrt{74}\)
=>x = \(25:\sqrt{74}=\dfrac{25\sqrt{74}}{74}\)
y = \(49:\sqrt{74}=\dfrac{49\sqrt{74}}{74}\)
b)Áp dụng hệ thức lượng trong tam giác ta có:
y(x+y) = 142 = 196
x+y=16(giả thiết)
=> y = 196:16 = 12,25
=> x = 16-12,25=3,75