Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét n chẵn thì n(n+13) chia hết cho 2
Xét n lẻ thì n+13 chẵn suy ra n(n+13) chia hết cho 2
a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3
b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng)
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27.
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27.
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1
= (10^k+18k-1)+9*10^k+18
= (10^k+18k-1)+9(10^k+2)
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27.
Chứng minh 9(10^k+2) chia hết cho 27.
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng)
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27.
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27.
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2)
= 9(10^m+2) +81*10^m
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27
=>9(10^k+2) chia hết cho 27
=>10^(k+1)+18(k+1)-1 chia hết cho 27
=>10^n+18n-1 chia hết cho 27=> đpcm
K MINH NHA!...............
a) Để â nhận giá trị nguyên
\(\Rightarrow8n-9⋮2n+5\)
\(\Rightarrow8n+20-29⋮2n+5\)
\(\Rightarrow4.\left(2n+5\right)-29⋮2n+5\)
mà \(4.\left(2n+5\right)⋮2n+5\)
\(\Rightarrow-29⋮2n+5\)
\(\Rightarrow2n+5\inƯ\left(-29\right)\)
tự làm nốt nhé, tick nha
Coi a là số tự nhiên nhỏ nhất
Bài 1 Khi chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3 suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6
hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)
Suy ra BCNN(3,4,5,6)=32. 23.5=360
BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)
a thuộc(358;718;1078,..)
Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078
Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0)
3n =(...9) (số tận cùng của 3n=9)
Ta có 3n+4+1=3n.34+1
=(...9).(...1) +1
= (...0) Vậy 3n+4+1 có tận cùng là 0
Suy ra 3n+4+1 là bội của 10
4 + 4^3 + 4^5 + 4^7 + ... + 4^23
= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)
=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )
=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68
Câu 2:
1+3+3^2+3^3+....+3^2000
=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)
=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )
= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13
k mk nha lần sau mk k lại
Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)
= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68
=68.(1+4^4+....+4^20) chia hết cho 68
Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)
= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13
=13.(1+3^3+....+3^1998) chia hết cho 13
hinh nhu trong sach phat trien lop 6 co thi phai,lau roi quen