K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

ko biết

Nhìn đã hoa mắt

KB nhé

em lớp 2 nên ko hiểu 

a: PTHĐGĐ là;

-1/4x^2-mx+m+2=0

=>1/4x^2+mx-m-2=0

=>x^2+4mx-4m-8=0

\(\text{Δ}=\left(4m\right)^2-4\left(-4m-8\right)\)

\(=16m^2+16m+32\)

\(=16m^2+2\cdot4m\cdot2+4+28=\left(4m+2\right)^2+28>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: \(A=x_1\cdot x_2\left(x_1+x_2\right)\)

\(=4m\left(4m+8\right)\)

\(=\left(16m^2+32m+16-16\right)\)

\(=\left(4m+4\right)^2-16>=-16\)

Dấu = xảy ra khi m=-1

23 tháng 2 2023

 

\

21 tháng 4 2021

a, Xét hoành độ giao điểm của P và d ta có:

x2 = 3x + m2 - 2 

\(\Delta=b^2-4ac=4m^2+1>0\) ∀x 

=> d luôn cắt P tại hai điểm phân biệt.

 

 

 

 

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

NM
20 tháng 3 2021

xét phương trình hoành độ giao điểm

\(x^2-mx+m-1=0\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\)

vậy khi m=-2 thì tọa độ hai giao điểm là \(\hept{\begin{cases}x=1,y=1\\x=-3,y=9\end{cases}}\)

b. ta có \(\left|x_1\right|+\left|x_2\right|=1+\left|m-1\right|=4\Leftrightarrow\left|m-1\right|=3\Leftrightarrow\orbr{\begin{cases}m=4\\m=-2\end{cases}}\)

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(\text{Δ}=\left(-3\right)^2-4\left(-m^2+1\right)=4m^2-4+9=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

 

loading...  loading...  loading...  loading...  loading...  loading...  loading...  

a) Xét phương trình hoành độ giao điểm

  \(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=4\end{matrix}\right.\)

  Vậy tọa độ giao điểm là \(\left(1;1\right)\) và \(\left(-2;4\right)\)

  

bạn xem lại đề phần b 

undefined