Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(\left(x+2\right)^4=y^3+x^4\)
\(\Leftrightarrow y^3=\left(x+2\right)^4-x^4=x^4+8x^3+24x^2+32x+16-x^4\)
\(\Leftrightarrow y^3=8x^3+24x^2+32x+16\)
+ Vì \(24x^2+32x+16=4\left(6x^2+8x+4\right)=4\left[2x^2+4\left(x+1\right)^2\right]>0\forall x\)
\(\Rightarrow y^3>8x^3=\left(2x\right)^3\) (1)
+ Xét \(M=\left(2x+3\right)^3-y^3=8x^3+36x^2+54x+27-8x^3-24x^2-32x-16\)
\(\Rightarrow M=12x^2+22x+11=x^2+11\left(x+1\right)^2>0\forall x\) (2)
Từ (1) và (2) \(\Rightarrow\left(2x\right)^3< y^3< \left(2x+3\right)^3\)
\(\Rightarrow\orbr{\begin{cases}y=2x+1\\y=2x+2\end{cases}}\)
* Với \(y=2x+1\), thay vào biểu thức ta có :
\(\left(2x+1\right)^3=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x^3+12x^2+6x+1=8x^3+24x^2+32x+16\)
\(\Leftrightarrow12x^2+26x+15=0\)
\(\Leftrightarrow2x\left(6x+13\right)=-15\)
Vì x nguyên nên \(2x\left(6x+13\right)⋮2\), mà -15 ko chia hết cho 2 nên PT vô nghiệm
* Với \(y=2x+2\), ta có :
\(\left(2x+2\right)^3=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x^3+24x^2+24x+8=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x+8=0\)
\(\Leftrightarrow x=-1\)
Suy ra : \(y=2.\left(-1\right)+2=0\)
Vây PT có nghiệm \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
a)
\(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
Suy ra : \(\orbr{\begin{cases}xy=0\\xy+1=0\end{cases}}\)
+ Với \(xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)
Thay vào biểu thức ta đc \(x=y=0\)
+ Với \(xy+1=0\Leftrightarrow xy=-1\)
Vì x, y nguyên nên \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)
Thay vao biểu thức ta thấy thỏa mãn !
Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\right\}\)
\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)
Bài 1:
\(x^2-8x+y^2+6y+25=0\)
\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)
Vậy...
Bài 2:
Phương trình có nghiệm duy nhất là x = -2/3 nên ta có:
\(\left(4+a\right).\frac{-2}{3}=a-2\)
\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)
\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)
\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)
\(\Leftrightarrow\)\(a=-\frac{2}{5}\)
Bài 3:
\(A=a^4-2a^3+3a^2-4a+5\)
\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)
\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)
\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)
\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)
\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)
Bài 4:
\(xy-3x+2y=13\)
\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)
\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)
x+2 | -7 | -1 | 1 | 7 |
y-3 | -1 | -7 | 7 | 1 |
x | -9 | -3 | -1 | 5 |
y | 2 | -4 | 10 | 4 |
Vậy...
Bài 5:
\(xy-x-3y=2\)
\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)
\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)
x-3 | -5 | -1 | 1 | 5 |
y-1 | -1 | -5 | 5 | 1 |
x | -2 | 2 | 4 | 8 |
y | 0 | -4 | 6 | 2 |
Vậy....