Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\Rightarrow\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=1\end{matrix}\right.\)
\(K=\frac{\frac{1}{a}}{\sqrt{\frac{1}{bc}\left(1+\frac{1}{a^2}\right)}}+\frac{\frac{1}{b}}{\sqrt{\frac{1}{ac}\left(1+\frac{1}{b^2}\right)}}+\frac{\frac{1}{c}}{\sqrt{\frac{1}{ab}\left(1+\frac{1}{c^2}\right)}}\) \(=\frac{\frac{1}{a}}{\sqrt{\frac{a^2+1}{a^2bc}}}+\frac{\frac{1}{b}}{\sqrt{\frac{b^2+1}{ab^2c}}}+\frac{\frac{1}{c}}{\sqrt{\frac{c^2+1}{abc^2}}}\)
\(=\sqrt{\frac{bc}{a^2+1}}+\sqrt{\frac{ca}{b^2+1}}+\sqrt{\frac{ab}{c^2+1}}\) \(=\sqrt{\frac{bc}{a^2+ab+bc+ca}}+\sqrt{\frac{ca}{b^2+ab+bc+ca}}+\sqrt{\frac{ab}{c^2+ab+bc+ca}}\)
\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{b}{b+c}\right)\) \(\Rightarrow K\le\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c\Leftrightarrow x=y=z=\sqrt{3}\)
a, dk \(x\ge0.x\ne1\)
\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)
=\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)
phan b,c ban tu lam not nhe dai lam mk ko lam dau mk co vc ban rui
Sửa đề cho x,y,z dương thỏa mãn xyz=1 tìm max \(...+\frac{1}{\sqrt{\left(2z+1\right)\left(x+2\right)}}\)
gọi bthuc là A
\(\frac{1}{\sqrt{\left(2x+1\right)\left(y+2\right)}}\le\frac{2}{2x+y+3}=\frac{2}{x+y+x+1+2}\le\frac{2}{2\sqrt{xy}+2\sqrt{x}+2}=\frac{1}{\sqrt{xy}+\sqrt{x}+1}\)
Tương tự,cộng vế theo vế ta dc:
\(A\le\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{zx}+\sqrt{z}+1}\)
\(=\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{x}}{1+\sqrt{xy}+\sqrt{x}}+\frac{\sqrt{xy}}{\sqrt{x}+1+\sqrt{xy}}=1\)
Dấu "=" xảy ra <=> x=y=z=1
Do 2 không chia hết cho 3 nên \(2^n\)không chia hết cho 3 ( do \(n\in N\))
\(\Rightarrow2^n\)chia 3 dư 1 hoặc 2
\(\Rightarrow\orbr{\begin{cases}2^n-1⋮3\\2^n+1⋮3\end{cases}}\)
\(\Rightarrow\left(2^n-1\right)\left(2^n+1\right)⋮3\)với mọi \(n\in N\)(đpcm)
2.a,
\(x^2-2x+3=2\sqrt{2x^2-4x+3}\)
Đặt \(\sqrt{x^2-2x+3}=t\left(t\ge\sqrt{2}\right)\)
\(\Rightarrow2x^2-4x+3=2t^2-3\)
\(\Rightarrow\)phương trình trên trở thành:
\(t^2=2\sqrt{2t^2-3}\)
\(\Leftrightarrow t^4=8t^2-12\)
\(\Leftrightarrow t^4-8t^2+12=0\)
\(\Leftrightarrow\left(t^2-6\right)\left(t^2-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t^2-6=0\\t^2-2=0\end{cases}}\)
TH1. \(t^2-6=0\)\(\Rightarrow x^2-2x+3=6\)\(\Leftrightarrow x^2-2x-3=0\)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x=3\)hoặc \(x=-1\)
TH2. \(t^2-2=0\) \(\Rightarrow x^2-2x+3=2\)\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x=1\)
Vậy pt có tập nghiệm là \(S=\left\{1;3;-1\right\}\)
4.
a,
Xét tam giác ABO có OA=OB=R và AB=\(R\sqrt{2}\)(gt)
mà \(R^2+R^2=\left(R\sqrt{2}\right)^2\)
\(\Rightarrow\)độ dài 3 cạnh của tam giác ABO là một bộ số Pitagoras
\(\Rightarrow\)tam giác ABO vuông cân tại O
\(\Rightarrow\)\(\widehat{OAB}=\widehat{OBA}=45^0\)
Xét tam giác CAP có CA=CP=\(R_1\)\(\Rightarrow\)tam giác CAP cân tại C mà \(\widehat{CAP}=45^0\)
\(\Rightarrow\)tam giác CAP vuông cân tại C
tương tự \(\Rightarrow\)tam giác DBP vuông cân tại D
ta có: CP vuông góc vơi OA(c/m trên) và DB vuông góc với OB(c/m trên)
mà OA vuông góc vơi OB \(\Rightarrow\)\(\widehat{CPD}=90^0\)
\(\widehat{CMD}=\widehat{CMP}+\widehat{DMP}=\widehat{CPM}+\widehat{DPM}=\widehat{CPD}=90^0\)
\(\Rightarrow\)\(M\in\)đường tròn đường kính CD
do tứ giác OCPD là hình chữ nhật ( có 4 góc vuông ) \(\Rightarrow\)\(M,O,C,D,P\)cùng thuộc 1 đường tròn đường kính OP (đpcm)
\(\Rightarrow\)OM vuông góc với MP mà CD vuông góc với MP ( t/c đường nối tâm vuông góc với dây chung tại trung điểm)
\(\Rightarrow OM//CD\)(đpcm)
Ta có:
\(1+x^2=xy+yz+xz+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)
\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)
Thay vào T ta được:
\(T=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(=xy+xz+xy+yz+xz+zy\)
\(=2\left(xy+yz+xz\right)=2\left(xy+yz+xz=1\right)\)
Ta có \(1+x^2=x^2+xy+yz+zx=\left(x+y\right)\left(z+x\right)\).
Tương tự ta cũng có \(1+y^2=\left(x+y\right)\left(y+z\right)\) và \(1+z^2=\left(z+x\right)\left(y+z\right)\).
Thu gọn được \(T=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Ta có \(x^2+1=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)
\(y^2+1=\left(y+z\right)\left(y+x\right)\)
\(z^2+1=\left(z+x\right)\left(z+y\right)\)
Khi đó
\(S=x.\sqrt{\left(y+z\right)^2}+y.\sqrt{\left(x+z\right)^2}+z.\sqrt{\left(x+y\right)^2}=2\left(xy+yz+xz\right)=2\)
Sửa đề: \(T=\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}}+\sqrt{1+\frac{1}{y^2}+\frac{1}{\left(y+1\right)^2}}+\frac{4}{\left(x+1\right)\left(x+1\right)}\)
Rồi để ý: \(1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{x}-\frac{1}{\left(x+1\right)}\right]^2+\frac{2}{x\left(x+1\right)}+1\)
\(=\left[\frac{1}{x\left(x+1\right)}\right]^2+\frac{2}{x\left(x+1\right)}+1=\left[\frac{1}{x\left(x+1\right)}+1\right]^2=\left[1+\frac{1}{x}-\frac{1}{x+1}\right]^2\)
Tương tự với y rồi thế vào căn là xong:D