Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x3 - 13x2 + 9x - 18
= 4x3 - 12x2 - x2 + 3x + 6x - 18
= 4x2(x - 3) - x(x - 3) + 6(x - 3)
= (x - 3)(4x2 - x + 6)
x2 + 5x - 6
= x2 + 2x + 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
x3 + 8x2 + 17x + 10
= x3 + x2 + 7x2 + 7x + 10x + 10
= x2(x + 1) + 7x(x + 1) + 10(x + 1)
= (x + 1)(x2 + 7x + 10)
= (x + 1)(x2 + 5x + 2x + 10)
= (x + 1)[ x(x + 5) + 2(x + 5)]
= (x + 1)(x + 5)(x + 2)
x3 + 3x2 + 6x + 4
= x3 + 3x2 + 3x + 1 + 3x + 3
= (x + 1)3 + 3(x + 1)
= (x + 1)[(x + 1)2 + 3]
= (x + 1)(x2 + 2x + 1 + 3)
= (x + 1)(x2 + 2x + 4)
2x3 - 12x2 + 17x - 2
= 2x3 - 8x2 - 4x2 + x + 16x - 2
= (2x3 - 8x2 + x) - (4x2 - 16x + 2)
= x(2x2 - 8x + 1) - 2(2x2 - 8x + 1)
= (2x2 - 8x + 1)(x - 2)
a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)
b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)
\(a,\dfrac{5}{2x+6}=\dfrac{5\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)};\dfrac{3}{x^2-9}=\dfrac{6}{2\left(x-3\right)\left(x+3\right)}\\ b,\dfrac{2x}{x^2-8x+16}=\dfrac{6x}{3\left(x-4\right)^2};\dfrac{x}{3x^2-12x}=\dfrac{1}{3x-12}=\dfrac{x-4}{3\left(x-4\right)^2}\)
x2 - 10xy + 9y
= x2 - xy - 9xy + 9y2
= x(x - y) - 9y(x - y)
= (x - y)(x - 9y)
x3 - x2 - 4
= x3 + x2 + 2x - 2x2 - 2x - 4
= x(x2 + x + 2) - 2(x2 + x + 2)
= (x2 + x + 2)(x - 2)
x3 - 5x2 + 8x - 4
= x3 - x2 - 4x2 + 4x + 4x - 4
= x2(x - 1) - 4x(x - 1) + 4(x - 1)
= (x - 1)(x2 - 4x + 4)
= (x - 1)(x - 2)2
x3 + 2x - 3
= x3 - x2 + x2 - x + 3x - 3
= x2(x - 1) + x(x - 1) + 3(x - 1)
= (x - 1)(x2 + x + 3)
x3 + 5x2 + 8x + 4
= x3 + x2 + 4x2 + 4x + 4x + 4
= x2(x + 1) + 4x(x + 1) + 4(x + 1)
= (x + 1)(x2 + 4x + 4)
= (x + 1)(x + 2)2