Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)
2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)
4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
5, \(2x^3+3x^2+2x+3\)
\(=x^2\left(2x+3\right)+2x+3\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
6, \(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^3z-x^2z^2+x^2yz-xy^2\)
\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)
\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)
\(=xz\left(x+y\right)\left(x-z\right)\)
8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)
9, \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
10, \(x^2-8x+12\)
\(=x^2-6x-2x+12\)
\(=x\left(x-6\right)-2\left(x-6\right)\)
\(=\left(x-2\right)\left(x-6\right)\)
Chỗ còn lại mai làm nốt nha.
Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha
11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)
\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)
\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
12, \(x^3-7x-6\)
\(=x^3-3x^2+3x^2-9x+2x-6\)
\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)
13, \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
14, \(a^4+64\)
\(=a^4+16a^2+64-16a^2\)
\(=\left(a^2+8\right)^2-16a^2\)
\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)
15, \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
16, \(x^5+x-1\)
\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)
17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)
19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)
Đặt \(x^2+8x+7=a\) ta có:
(*) \(\Leftrightarrow a\left(a+8\right)+15\)
\(\Leftrightarrow a^2+8a+15\)
\(\Leftrightarrow a^2+3a+5a+15\)
\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)
\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)
Đặt \(x^2+3x+1=a\) ta có:
(*) \(\Leftrightarrow a\left(a+1\right)-6\)
\(\Leftrightarrow a^2+a-6\)
\(\Leftrightarrow a^2+3a-2a-6\)
\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)
\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)
\(A=x^2+9x+25\)
\(=x^2+2x\frac{9}{2}+\frac{81}{4}+\frac{19}{4}\)
\(=\left(x+\frac{9}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu"="xảy ra khi \(\left(x+\frac{9}{2}\right)^2=0\Rightarrow x=\frac{-9}{2}\)
Vậy \(Min_A=\frac{19}{4}\Leftrightarrow x=\frac{-9}{2}\)
b,\(B=4x^2-8x+\frac{21}{2}\)
\(=4\left(x^2-2x+1\right)+\frac{13}{2}\)
\(=4\left(x-1\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
Dấu"="xảy ra khi \(4\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_B=\frac{13}{2}\Leftrightarrow x=1\)
c,\(C=-x^2+2x+\frac{5}{2}\)
\(=-\left(x^2-2x-\frac{5}{2}\right)\)
\(=-\left(x^2-2x+1\right)+\frac{7}{2}\)
\(=-\left(x-1\right)^2+\frac{7}{2}\le\frac{7}{2}\forall x\)
Dấu"="xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy\(Max_C=\frac{7}{2}\Leftrightarrow x=1\)
Bài 1.
A = x2 + 9x + 25
= ( x2 + 9x + 81/4 ) + 19/4
= ( x + 9/2 )2 + 19/4 ≥ 19/4 ∀ x
Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2
=> MinA = 19/4 <=> x = -9/2
B = 4x2 - 8x + 21/2
= 4( x2 - 2x + 1 ) + 13/2
= 4( x - 1 )2 + 13/2 ≥ 13/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 13/2 <=> x = 1
C = -x2 + 2x + 5/2
= -( x2 - 2x + 1 ) + 7/2
= -( x - 1 )2 + 7/2 ≤ 7/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxC = 7/2 <=> x = 1
D = -9x2 - 12x + 27/2
= -9( x2 + 4/3x + 4/9 ) + 35/2
= -9( x + 2/3 )2 + 35/2 ≤ 35/2 ∀ x
Đẳng thức xảy ra <=> x + 2/3 = 0 => x = -2/3
=> MaxD = 35/2 <=> x = -2/3
Bài 2.
a) 4x2 + 9y2 + 12x + 12y + 13 = 0
<=> ( 4x2 + 12x + 9 ) + ( 9y2 + 12y + 4 ) = 0
<=> ( 2x + 3 )2 + ( 3y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\forall x\\\left(3y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x+3\right)^2+\left(3y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}2x+3=0\\3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)
=> x = -3/2 ; y = -2/3
b) 16x2 + 4y2 - 8x + 12y + 10 = 0
<=> ( 16x2 - 8x + 1 ) + ( 4y2 + 12y + 9 ) = 0
<=> ( 4x - 1 )2 + ( 2y + 3 )2 = 0 (*)
\(\hept{\begin{cases}\left(4x-1\right)^2\ge0\forall x\\\left(2y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(4x-1\right)^2+\left(2y+3\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}4x-1=0\\2y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{3}{2}\end{cases}}\)
=> x = 1/4 ; y = -3/2
a) \(x^3+2x^2y+xy^2-4xz^2=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-\left(2z\right)^2\right]\)
\(=x\left(x+y-2z\right)\left(x+y+2z\right)\)
b)\(-8x^3+12x^2y-6xy^2+y^3=y^3+3.y.\left(2x\right)^2-3.y^2.2x-\left(2x\right)^3\)\(=\left(y-2x\right)^3\)
c)\(6x^2+7x-5=2x\left(3x+5\right)-\left(3x+5\right)=\left(3x+5\right)\left(2x-1\right)\)
d)\(x^4+64y^4=\left(x^2\right)^2+2.x^2.8y^2+\left(8y^2\right)^2-16x^2y^2=\left(x^2+8y^2\right)-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
e)\(x\left(2-x\right)-x+2=x\left(2-x\right)+\left(2-x\right)=\left(2-x\right)\left(x+1\right)\)
f)\(2x^2+3x-2=2x\left(x+2\right)-\left(x+2\right)=\left(x+2\right)\left(2x-1\right)\)
h)\(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
g)\(x^3-3x^2-9x+27=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)\)\(=\left(x-3\right)^2\left(x+3\right)\)
B2: \(x^3-5x=0\Rightarrow x\left(x^2-5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x^2-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=5\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\sqrt{5}\\x=-\sqrt{5}\end{cases}}\end{cases}}\)
1) 4x\(^2\).(5x3+2x-1)
= 20x\(^5\)+8x\(^3\)-4x\(^2\).
2) 4x\(^3\): x2
= 4x
3) ( 15x2y3-10x3y3+6xy): 5xy
= 3xy2-2x2y2+\(\dfrac{6}{5}\)
4) (5x3+14x2+12x+8 ): (x+2)
= 5x2+4x+4
5)\(\dfrac{7}{2x}\)+\(\dfrac{11}{3y^2}\)
=\(\dfrac{7.3y^2+11.2x}{6xy^2}\) =\(\dfrac{21y^2+22x}{6xy^2}\) = \(\dfrac{21+22}{6}\) =\(\dfrac{43}{6}\)
6) \(\dfrac{x}{x+2}\) +\(\dfrac{3}{\left(x+2\right)\left(4x-7\right)}\)
7)\(\dfrac{3}{x-y}\)-\(\dfrac{2x^2}{x+y}\)
= \(\dfrac{3\left(x+y\right)-2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{3x+3y-2x-2y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{1}{x-y}\).
8)\(\dfrac{1}{2}\)x2y2.(2x+y)(2x-y)
= \(\dfrac{1}{2}\)x2y2.(4x2-2xy+2xy-y2)
= \(\dfrac{1}{2}\)x2y2.(4x2-y2)
= 2x4y2-\(\dfrac{1}{2}\)x2y4
9) (x-\(\dfrac{1}{2}\)).(x+\(\dfrac{1}{2}\)).(4x-1)
= x2.(4x-1)
= 4x3-x2
10)\(\dfrac{3x}{2x+6}\)+\(\dfrac{6-x}{2x^2+6x}\)
= \(\dfrac{3x}{2\left(x+3\right)}\)+\(\dfrac{6-x}{2x\left(x+3\right)}\)= \(\dfrac{3x^2+6-x}{2x\left(x+3\right)}\)=\(\dfrac{3-x}{3}\)= -x
11) x2-\(\dfrac{1}{2x-2}\)+3x+\(\dfrac{3}{1-x^2}\)
12)\(\dfrac{x^2}{x^2-y^2}\)-\(\dfrac{x-y}{x^2-y^2}\)
= \(\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)= \(\dfrac{x}{x+y}\)
Trả lời tội ghê đó bạn nhưng mk gửi một bài mà sao bạn trả lời một câu vậy bạn nhưng dù sao vẫn cảm on nha
Bài 1:
a) 25x2 - 10xy + y2 = (5x - y)2
b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)
c) 8x3 + 36x2y + 54xy2 + 27y3
= 8x3 + 27y3 + 36x2y + 54xy2
= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)
= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)
= (2x + 3y)(4x2 + 12xy + 9y2)
= (2x + 3y)(2x + 3y)2 = (2x + 3y)3
c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2
= (a2 + b2 - 5)2 - (2ab + 4)2
= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)
= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)
= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)
= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)
pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm
Bài 2:
a) 2x3 + 3x2 + 2x + 3
= 2x3 + 2x + 3x2 + 3
= 2x(x2 + 1) + 3(x2 + 1)
= (x2 + 1)(2x + 3)
b)x3z + x2yz - x2z2 - xyz2
= xz(x2 + xy - xz - yz)
= \(xz\left [ x(x + y) - z(x + y) \right ]\)
= xz(x + y)(x - z)
c) x2y + xy2 - x - y
= xy(x + y) - (x + y)
= (x + y)(xy - 1)
d) 8xy3 - 5xyz - 24y2 + 15z
= 8xy3 - 24y2 - 5xyz + 15z
= 8y2(xy - 3) - 5z(xy - 3)
= (xy - 3)(8y2 - 5z)
e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3
= x3 - y3 + y - 3x2y + 3xy2 - x
= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)
= (x - y)(x2 + xy + y2 - 3xy - 1)
= (x - y)(x2 - 2xy + y2 - 1)
= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)
= (x - y)(x - y - 1)(x - y + 1)
câu f tương tự
f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0
<=>(x-y)2+2(x-y)+1+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))
Ta có : (2x - 1)2 - 25 = 0
=> (2x - 1)2 = 25
=> \(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)