Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+4x-9y^2+1\\ =\left(4x^2+4x+1\right)-9y^2\\ =\left(2x+1\right)^2-9y^2\\ =\left(2x+1\right)^2-\left(3y\right)^2\\ =\left[\left(2x+1\right)+3y\right]\left[\left(2x+1\right)-3y\right]\\ =\left(2x+1+3y\right)\left(2x+1-3y\right)\)
\(x^2-6xy+9y^2-25z^2\\ =\left(x^2-6xy+9y^2\right)-25z^2\\ =\left(x-3y\right)^2-25z^2\\ =\left(x-3y\right)^2-\left(5z\right)^2\\ =\left[\left(x-3y\right)+5z\right]\left[\left(x-3y\right)-5z\right]\\ =\left(x-3y+5z\right)\left(x-3y-5z\right)\)
\(x^2-xy+x-y\\ =\left(x^2-xy\right)+\left(x-y\right)\\ =x\left(x-y\right)+\left(x-y\right)\\ =\left(x-y\right)\left(x-1\right)\)
x^2+6xy+9y^2-3x-9y+2
=( x^2+6xy+9y^2)-3(x+3y)+9/4 -1/4
=(x+3y)^2-3(x+3y)+(3/2)^2- 1/4
=(x+3y+3/2)^2-(1/2)^2
=(x+3y+3/2+1/2)(x+3y+3/2-1/2)=(x+3y+2)(x+3y+1)
\(P=x^2+2y^2-2xy-8y+2018\)
\(=\left(x+y\right)^2+\left(y-4\right)^2+2002\ge2002\forall x;y\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y=4\end{cases}}}\)
\(\Rightarrow x=-4\)
Vậy minP=2002 tại x=-4;y=4
a) \(P=x^2+2y^2-2xy-8y+2018\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-8y+16\right)+2012\)
\(=\left(x-y\right)^2+\left(y-4\right)^2+2012\)
Vì\(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y\\\left(y-4\right)^2\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2+2012\ge0+2012;\forall x,y\)
Hay \(P\ge2012;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)
\(\Leftrightarrow x=y=4\)
Vậy MIN P=2012 \(\Leftrightarrow x=y=4\)
a) 2x3 + 6xy - x2z - 3yz
= ( 2x3 + 6xy ) - ( x2z + 3yz )
= 2x( x2 + 3y ) - z( x2 + 3y )
= ( x2 + 3y )( 2x - z )
b) x2 - 6xy + 9y2 - 49
= ( x2 - 6xy + 9y2 ) - 49
= ( x - 3y )2 - 72
= ( x - 3y - 7 )( x - 3y + 7 )
c) x3 + 4x2 + 16x + 64
= ( x3 + 4x2 ) + ( 16x + 64 )
= x2( x + 4 ) + 16( x + 4 )
= ( x + 4 )( x2 + 16 )
a) =(2x^3-x^2z)+(6xy-3yz)
=x^2(2x-z)+3y(2x-z)
=(x^2+3y)(2x-z)
b) =(x^2-6xy+9y^2)-7^2
=(x-3y)^2-7^2
=(x-3y+7)(x-3y-7)
c) =(x^3+4x^2)+(16x+64)
=x^2(x+4)+16(x+4)
=(x^2+16)(x+4)
a)\(x^2-6xy+9y^2=x^2-2\cdot x\cdot3y+\left(3y\right)^2=\left(x-3y\right)^2\)
b) \(\left(x^2+1\right)^2-4x^2\)
\(=\left(x^2+1+2x\right)\left(x^2+1-2x\right)\)
\(=\left(x+1\right)^2\left(x-1\right)^2\)
a)\(x^2-6xy+9y^2-25z^2=\left[x^2-2.x.3y+\left(3y\right)^2\right]-\left(5z\right)^2\)
\(=\left(x-3y\right)^2-\left(5z\right)^2=\left(x-3y-5z\right)\left(x-3y+5z\right)\)
b)\(xyz+x^2yz-6yz=yz\left(x^2+x-6\right)=yz\left(x^2+3x-2x-6\right)\)
\(=yz\left[x\left(x+3\right)-2\left(x+3\right)\right]=yz\left(x-2\right)\left(x+3\right)\)
a.x2-6xy+9y2-25z2
= ( x2-6xy+9y2)-25z2
= [x2-2x3y+(3y)2]-25z2
= (x-3y)2-252
= (x-3y+25)(x-3y-25)
GTNN đạt tại \(x=5;\text{ }y=\frac{7}{3}\).
Theo đó mà phân tích A thành tổng các bình phương sao cho dấu bằng xảy ra tai x = 5; y = 7/3.
x2 - 6xy + 9y2 = (x - 3y)2
Chúc bạn học tốt!!!
x2-6xy+9y2=(x-3y)^2
k cho mk nha pn!!