K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2023

Để pt có 2 nghiệm pb thì \(\Delta\ge0\)

\(\Leftrightarrow\Delta\ge0\)

Ta có : \(\Delta=b^2-4ac=\left[-\left(2m-3\right)\right]^2-4\left(-m+2\right)\ge0\)

\(\Leftrightarrow\left(2m-3\right)^2+4m-8\ge0\)

\(\Leftrightarrow4m^2-12m+9+4m-8\ge0\)

\(\Leftrightarrow4m^2-8m+1\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{2+\sqrt{3}}{2}\\m=\dfrac{2-\sqrt{3}}{2}\end{matrix}\right.\)

2 tháng 7 2020

a, Để phương trình có 2 nghiệm phân biệt thì 

\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)

\(< =>4m^2-4m+1-4m^2+1>0\)

\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)

b , bạn dùng vi ét là ra 

10 tháng 5 2021

Đặt \(x^2=a\left(a\ge0\right)\)

Khi đó PT tương đương: \(a^2-2\left(m+1\right)a+2m+1=0\) (1)

\(\Delta^'=\left[-\left(m+1\right)\right]^2-1\cdot\left(2m+1\right)=m^2+2m+1-2m-1=m^2\)

Mà \(\Delta^'=m^2\ge0\left(\forall m\right)\) => PT luôn có nghiệm

Để PT đề bài có 2 nghiệm phân biệt thì ta có 2TH sau:

TH1: PT(1) phải có 1 nghiệm dương, 1 nghiệm âm

Khi đó theo hệ thức viet thì \(2m+1< 0\Leftrightarrow m< -\frac{1}{2}\)

Khi đó a dương sẽ là giá trị thỏa mãn => \(\Rightarrow\hept{\begin{cases}x_1=\sqrt{a}\\x_2=-\sqrt{a}\end{cases}}\)

TH2: PT(1) có nghiệm kép dương

PT có nghiệm kép thì \(\Delta^'=0\Rightarrow m=0\)

Thay vào ta được: \(x^4-2x^2+1=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=0\Rightarrow x^2-1=0\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\left(tm\right)\)

Vậy \(\orbr{\begin{cases}m=0\\m< -\frac{1}{2}\end{cases}}\) thì PT có 2 nghiệm phân biệt

5 tháng 3 2022

a, \(\Delta'=1-\left(2m-5\right)=6-2m\)

để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)

b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)

\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm) 

5 tháng 3 2022

a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)

Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)

Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)

Vậy để [...] thì \(m=\frac{39}{14}\)

18 tháng 10 2020

a) Với m = 3 

Ta có: \(x^4-2.3.x^2+3^2-1=0\)

<=> \(\left(x^2-3\right)^2-1=0\Leftrightarrow\left(x^2-3-1\right)\left(x^2-3+1\right)=0\)

<=> \(\left(x^2-4\right)\left(x^2-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\pm\sqrt{2}\end{cases}}\)

b) \(x^4-2mx^2+\left(m^2-1\right)=0\)(1)

Đặt: \(x^2=t\ge0\)

Ta có phương trình ẩn t: \(t^2-2mt+\left(m^2-1\right)=0\)(2)

(1) có 3 nghiệm phân biệt <=> (2) có 1 nghiệm t = 0 và 1 nghiệm t >0 

Với t = 0 thay vào (2) ta có: \(m^2-1=0\Leftrightarrow m=\pm1\)

+) Nếu m = 1; ta có: \(t^2-2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=3\end{cases}}\)tm 

+) Nếu m = - 1 ta có: \(t^2+2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=-2\end{cases}}\)loại

Vậy m = 1