Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)
Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.
Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)
Suy ra \(MinA^2=0\Leftrightarrow m=-1\)
Vậy Min A = 0 \(\Leftrightarrow\)m = -1
ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét
a) Do x = -3 là 1 nghiệm của phương trình đã cho nên ta có :
(-3)^2 - ( 3m - 2 ) * (-3) + 2m^2 -m+1=0
<=> 9 + 9m - 6 + 2m^2 - m + 1 = 0
<=> 2m^2 + 8m + 4 = 0
<=> m^2 + 4m + 2 = 0
denta phẩy = 2^2 - 1*2 = 4 - 2 = 2 >0
=> m1 = ( -2 + căn 2 ) / 1 = -2 + căn 2
m2 = ( -2 - căn 2 ) / 1 = -2 - căn 2
Vậy với m = ........ ( kết luận)
b) x^2 - ( 30 - 2 ) + 2m^2 - m + 1 = 0
denta = ( 3m - 2)^2 - 4 * 1 * ( 2m^2 - m + 1) = 9m^2 -12m + 4 - 8m^2 + 4m - 4 = m^2 - 8m = m( m - 8 )
Phương trình có nghiệm khi denta > hoặc = 0
=> m( m - 8 ) > hoặc = 0
m > hoặc = 0 và m - 8 > hoặc = 0
<=> Hoặc m < hoặc = 0 và m - 8 < hoặc = 0 ( dừng dấu ngoặc vuông để ngoặc giữa 2 dòng này nhé)
m > hoặc = 0 và m > hoặc = 8
<=> hoặc m< hoặc = 0 và m < hoặc = 8 ( giống trên )
m > hoặc = 8
<=> hoặc m < hoặc = 0
Vậy với m> hoặc = 8 hoặc m < hoặc = 0 thì phương trình đã cho có nghiệm
Theo Vi-et ta có x1 + x2 = 3m - 2
và x1 * x2 = 2m^2 - m + 1
P =x1^2 + x2^2 - 5x1x2 = ( x1 + x2 ) - 2x1x2 -5x1x2 = (x1 + x2 ) - 7x1x2 = 3m - 2 - 7 * ( 2m^2 - m + 1) ( do x1 +x2 = 3m + 2 và x1x2= 2m^2 - m + 1)
= 3m - 2 -14m^2 + 7m - 7 = -14m^2 - 10m - 9
Mk làm được đến đây thôi ak
có gì thì k cho mk nhé vis cái này mỏi lắm đấy *****
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
b) \(\Delta=4-4\left(-m\right)=4+4m\). pt có nghiệm <=> \(\Delta\ge0\Leftrightarrow4+4m\ge0\Leftrightarrow m\ge-1\)
pt có nghiệm với mọi m>=-1 => áp dụng hệ thức vi ét ta có: \(x1+x2=-2\); \(x1.x2=-m\);
\(x1^4+x2^4=\left(x1+x2\right)^4-4x1^3x2-6x1^2x^2_2-4x1x2^3=16-2x1.x2\left(2x^2+3x1.x2+2x^2_2\right)\)
\(=16+2m\left[2\left(x1^2+2x1.x2+x2^2\right)-x1.x2\right]=16+2m\left[2\left(x1+x2\right)^2+m\right]=16+2m.4+2m^2=2m^2+8m+16\)
\(=2\left(m^2+4m+8\right)=2\left(m^2+4m+4+4\right)=2\left(m+2\right)^2+8\)
\(m\ge-1\Rightarrow m+2\ge1\Leftrightarrow2\left(m+2\right)^2+8\ge10\)=> Min P=10 <=> m=-1
Sao ở khúc 16 + 2m [2 (x1 + x2) ^ 2 + m] = 16 + 2*4 +2m vậy?