K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LM
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TH
0
WR
28 tháng 6 2019
Ta có:
\(F\left(1\right)=\left(1-1+1\right)^{1994}+\left(1+1-1\right)^{1994}-2=0\)
\(\Rightarrow\)x=1 là 1 nghiệm của phương trình F(x)=0=> F(x) chia hết cho x-1
Đa thức chia có bậc 2 nên đa thức dư có bậc không vượt quá 1.
Gọi đa thức dư là : x + a, có :
\(F\left(x\right)=\left(x^2-1\right)Q\left(x\right)+x+a\)
F(x) chia hết cho x-1=> F(1)=0<=>a+1=0<=>a=-1
Áp dụng định lý Bê-du; ta tìm được số dư là :
\(1^{1994}+1^{1993}+1=3\)
Vậy ...