Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) miền xác định của \(f\) là \(D=R\backslash\left\{\pm1\right\}\)
\(\text{∀}x\in D\), ta có: \(-x\in D\) và \(f\left(-x\right)=\frac{2x^4-x^2+3}{x^2-2}=f\left(x\right)\)
\(\Rightarrow\) \(f\) là hàm số chẵn
b) Ta có: \(\left|2x+1\right|-\left|2x-1\right|\ne0\)\(\Leftrightarrow\left|2x+1\right|\ne\left|2x-1\right|\)
\(\Leftrightarrow\left(2x+1\right)^2\ne\left(2x-1\right)^2\)
\(\Leftrightarrow x\ne0\)
\(\Rightarrow\) Miền xác định của \(f\) là \(D=R\backslash\left\{0\right\}\)
khi đó \(\text{∀}x\in D\) thì \(-x\in D\) và :
\(f\left(-x\right)=\frac{\left|-2x+1\right|+\left|-2x-1\right|}{\left|-2x+1\right|-\left|-2x-1\right|}\)\(=\frac{\left|2x-1\right|+\left|2x+1\right|}{\left|2x-1\right|-\left|2x+1\right|}\)\(=-\frac{\left|2x+1\right|+\left|2x-1\right|}{\left|2x+1\right|-\left|2x-1\right|}\)
\(=-f\left(x\right)\Rightarrow f\) là hàm số lẻ
a) Đặt \(t=\left|2x-\dfrac{1}{x}\right|\Leftrightarrow t^2=\left(2x-\dfrac{1}{x}\right)^2=4x^2-4+\dfrac{1}{x^2}\Leftrightarrow t^2+4=4x^2+\dfrac{1}{x^2}\) ĐK \(t\ge0\)
từ có ta có pt theo biến t : \(t^2+4+t-6=0\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(nh\right)\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|2x-\dfrac{1}{x}\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{x}=1\\2x-\dfrac{1}{x}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x^2-x-1=0\\2x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
c: TH1: x>0
Pt sẽ là \(\dfrac{x^2-1}{x\left(x-2\right)}=2\)
=>2x^2-4x=x^2-1
=>x^2-4x+1=0
hay \(x=2\pm\sqrt{3}\)
TH2: x<0
Pt sẽ là \(\dfrac{x^2-1}{-x\left(x-2\right)}=2\)
=>-2x(x-2)=x^2-1
=>-2x^2+4x=x^2-1
=>-3x^2+4x+1=0
hay \(x=\dfrac{2-\sqrt{7}}{3}\)
b:
TH1: 2x^3-x>=0
\(4x^4+6x^2\left(2x^3-x\right)+1=0\)
=>4x^4+12x^5-6x^3+1=0
\(\Leftrightarrow x\simeq-0.95\left(loại\right)\)
TH2: 2x^3-x<0
Pt sẽ là \(4x^4+6x^2\left(x-2x^3\right)+1=0\)
=>4x^4+6x^3-12x^5+1=0
=>x=0,95(loại)
a: \(x^2-2x+\left|x-1\right|-1=0\)
\(\Leftrightarrow x^2-2x+1+\left|x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2+\left|x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|x-1\right|+2\right)\left(\left|x-1\right|-1\right)=0\)
=>|x-1|=1
=>x-1=1 hoặc x-1=-1
=>x=2 hoặc x=0
b: \(4x^2-4x-\left|2x-1\right|-1=0\)
\(\Leftrightarrow4x^2-4x+1-\left|2x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|2x-1\right|\right)^2-\left|2x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|2x-1\right|-2\right)\left(\left|2x-1\right|+1\right)=0\)
=>|2x-1|=2
=>2x-1=2 hoặc 2x-1=-2
=>x=3/2 hoặc x=-1/2
c: \(\left|2x-5\right|+\left|2x^2-7x+5\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\\left(2x-5\right)\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{2}\)
d: \(x^2-2x-5\left|x-1\right|-5=0\)
\(\Leftrightarrow x^2-2x+1-5\left|x-1\right|-6=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2-5\left|x-1\right|-6=0\)
\(\Leftrightarrow\left(\left|x-1\right|-6\right)\left(\left|x-1\right|+1\right)=0\)
=>|x-1|=6
=>x-1=6 hoặc x-1=-6
=>x=7 hoặc x=-5
a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)
=>(2x-1)(x-2)(x+1)<>0
hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)
b: ĐKXĐ: x+5<>0
=>x<>-5
c: ĐKXĐ: x4-1<>0
hay \(x\notin\left\{1;-1\right\}\)
d: ĐKXĐ: \(x^4+2x^2-3< >0\)
=>\(x\notin\left\{1;-1\right\}\)
a/ \(f\left(-x\right)=\left(-x\right)^2-2\left(-x\right)=x^2+2x\) hàm ko chẵn ko lẻ
b/ \(f\left(-x\right)=-x^3+x^2-1\) hàm ko chẵn ko lẻ
c/ \(f\left(-x\right)=\left(3+x\right)^2\) hàm không chẵn ko lẻ
d/ \(f\left(-x\right)=\left|-x\right|=\left|x\right|=f\left(x\right)\) hàm chẵn
e/ \(f\left(-x\right)=\left|-x-2\right|+\left|-x+2\right|=\left|x+2\right|+\left|x-2\right|=f\left(x\right)\) hàm chẵn
f/ \(f\left(-x\right)=\left|-2x-1\right|-\left|-2x+1\right|=\left|2x+1\right|-\left|2x-1\right|=-f\left(x\right)\) hàm lẻ
g/ Miền xác định: \(-2\le x\le2\) là miền đối xứng
\(f\left(-x\right)=\sqrt{4-\left(-x\right)^2}=\sqrt{4-x^2}=f\left(x\right)\) hàm chẵn
a/ \(f\left(-x\right)=-x^3+2x^2-1\) hàm ko chẵn ko lẻ
b/ TXĐ: \(x\ge-1\) không phải 1 miền đối xứng nên hàm ko chẵn ko lẻ
c/ \(f\left(-x\right)=\left|-x-2\right|=\left|x+2\right|\) hàm vẫn ko chẵn ko lẻ
d/ TXĐ của hàm là đối xứng
\(f\left(-x\right)=\frac{\left|-x-2\right|+\left|-x+2\right|}{\left|-x\right|}=\frac{\left|x+2\right|+\left|x-2\right|}{\left|x\right|}=f\left(x\right)\)
Hàm chẵn
a/ f(−x)=−x3+2x2−1f(−x)=−x3+2x2−1 hàm ko chẵn ko lẻ
b/ TXĐ: x≥−1x≥−1 không phải 1 miền đối xứng nên hàm ko chẵn ko lẻ
c/ f(−x)=|−x−2|=|x+2|f(−x)=|−x−2|=|x+2| hàm vẫn ko chẵn ko lẻ
d/ TXĐ của hàm là đối xứng
f(−x)=|−x−2|+|−x+2||−x|=|x+2|+|x−2||x|=f(x)f(−x)=|−x−2|+|−x+2||−x|=|x+2|+|x−2||x|=f(x)
Hàm chẵn
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1
\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)
\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)
b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)
=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)
d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)
\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)
=\(\frac{1}{cosx.sinx}=VP\)
e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)
c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)
=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)
\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)
Đây nha bạn
a) đặc \(f\left(x\right)=y=\left|2x+1\right|+\left|2x-1\right|\)
\(D=R\) \(\Rightarrow\forall x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=\left|-2x+1\right|+\left|-2x-1\right|=\left|2x-1\right|+\left|2x+1\right|=f\left(x\right)\)
\(\Rightarrow\) hàm này là hàm chẳn
b) đặc \(f\left(x\right)=y=\dfrac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}\)
\(D=R\backslash\left\{0\right\}\) \(\Rightarrow\forall x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=\dfrac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}=\dfrac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}\)
\(=-\dfrac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}=-f\left(x\right)\)
\(\Rightarrow\) hàm này là hàm lẽ