K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2023

a) thế năng tăng dần trong khi động năng giảm dần là quá trình vật dao động từ vị trí cân bằng về hai biên.
b) thế năng giảm dần trong khi động năng tăng dần là quá trình vật dao động từ vị trí biên về vị trí cân bằng.

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

Phương trình dao động của vật là: \(x=Acos\left(\omega t-\dfrac{\pi}{2}\right)\)

Thế năng của dao động là: \(W_t=\dfrac{1}{2}m\omega^2A^2cos^2\left(\omega t-\dfrac{\pi}{2}\right)\)

Động năng của dao động là: \(W_d=\dfrac{1}{2}m\omega^2A^2sin^2\left(\omega t-\dfrac{\pi}{2}\right)\)

Đường màu xanh lá cây là thế năng, đường màu xanh nước biển là động năng

Trên đồ thị những thời điểm mà hai đồ thị cắt nhau thì động năng và thế năng có độ lớn bằng nhau

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

Hệ dao động điều hoà với chu kì 2 s nên tần số góc là: ω=π(rad/s)

Động năng và thế năng bằng nhau lần thứ nhất thì:

Wt=Wd⇒\(\frac{1}{2}\)mω2A2cos2(ωt+φ0)= \(\frac{1}{2}\)mω2A2sin2(ωt+φ0)

⇒cos2(πt+φ0)=sin2(πt+φ0)

⇒πt+φ0=\(\frac{\pi }{4} + \frac{{k\pi }}{2}\)

Lần thứ nhất động năng và thế năng bằng nhau nên k=1,t=0 nên ta có: φ0=\(\frac{{3\pi }}{4}\)

Động năng và thế năng bằng nhau lần thứ hai sau khoảng thời gian:

πt+\(\frac{{3\pi }}{4}\)=\(\frac{\pi }{4} + \frac{{2\pi }}{2}\)⇒t=0,5s

2 tháng 10 2023

`W_[đ]=W_[t]=>W=2W_t`

      `<=>1/2 kA^2=2. 1/2kx^2`

      `<=>x=[+-\sqrt{2}A]/2`.

Dựa vào trục thời gian ta có:loading...

   `=>t=T/4+T/4=[3T]/8=3/8(s)`.

20 tháng 10 2019

17 tháng 8 2023

Phát biểu nào sau đây là sai khi nói về năng lượng của hệ dao động điều hoà:

A. Hệ có thế năng cực đại khi vật ở vị trí biên dương.

B. Vật có động năng cực đại khi ở vị trí cân bằng.

C. Hệ có cơ năng không đổi trong suốt quá trình dao động.

D. Hệ có thế năng bằng không khi vật ở vị trí biên âm

16 tháng 7 2023

Hệ có động năng cực đại tại VTCB, thế năng cực đại tại vị trí hai biên (biên âm và dương) và ngược lại.

QT
Quoc Tran Anh Le
Giáo viên
5 tháng 11 2023

a) Từ 0 đến \(\frac{T}{4}\): Wđ tăng từ 0 đến giá trị lớn nhất tại \(\frac{T}{4}\), Wt giảm từ giá trị lớn nhất về 0 tại \(\frac{T}{4}\).

Từ \(\frac{T}{4}\)đến \(\frac{T}{2}\): Wđ giảm từ giá trị lớn nhất về 0 tại \(\frac{T}{2}\), Wt tăng từ 0 đến giá trị lớn nhất tại \(\frac{T}{2}\).

Từ \(\frac{T}{2}\)đến \(\frac{{3T}}{4}\): Wđ tăng từ 0 đạt giá trị lớn nhất tại \(\frac{{3T}}{4}\),Wt giảm từ giá trị lớn nhất về 0 tại \(\frac{{3T}}{4}\).

Từ \(\frac{{3T}}{4}\)đến T: Wđ giảm từ giá trị lớn nhất về 0 tại T, Wt tăng từ 0 đến giá trị lớn nhất tại T.

b) Tại thời điểm t = 0: Wđ = 0, Wt = W.

Tại thời điểm t = \(\frac{T}{8}\): Wđ = Wt = \(\frac{{\rm{W}}}{2}\).

Tại thời điểm t = \(\frac{T}{4}\): Wđ = W, Wt = 0.

Tại thời điểm t = \(\frac{{3T}}{8}\): Wđ = Wt = \(\frac{{\rm{W}}}{2}\).

→ ở mỗi thời điểm trên ta đều có: Wđ + Wt = W.

29 tháng 5 2017

6 tháng 11 2023

D. Cơ năng, biên độ, chu kỳ là 3 đại lượng không thay đổi theo thời gian trong dao động điều hoà.

18 tháng 8 2023

a) Ta có:

\(x=\dfrac{A}{2}=\dfrac{W_t}{W}=\dfrac{\dfrac{1}{2}mw^2x^2}{\dfrac{1}{2}mw^2A^2}=\dfrac{1}{4}\)

\(\Rightarrow W_t=25\%W\) và \(W_đ=75\%W\)

b) Mà:

\(W_t=W_đ\Rightarrow\dfrac{W_t}{W}=\dfrac{\dfrac{1}{2}mw^2x^2}{\dfrac{1}{2}mw^2A^2}=\dfrac{1}{2}\)

\(\Rightarrow x=\pm\dfrac{A}{\sqrt{2}}\)