K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Điều kiện xác định của phân thức \(M\): \(y \ne 0\)

Điều kiện xác định của phân thức \(N\): \(xy + y \ne 0\) hay \(xy \ne  - y\)

Khi \(x = 3\), \(y = 2\) (thoả mãn điều kiện xác định), ta có:

\(M = \dfrac{3}{2}\)

\(N = \dfrac{{{3^2} + 3}}{{3.2 + 2}} = \dfrac{{9 + 3}}{{6 + 2}} = \dfrac{{12}}{8} = \dfrac{3}{2}\)

Vậy \(M = N = \dfrac{3}{2}\) khi \(x = 3\), \(y = 2\)

Khi \(x =  - 1\), \(y = 5\) (thỏa mãn điều kiện xác định của \(M\)) ta có:

\(M = \dfrac{{ - 1}}{5}\)

Vậy \(M = \dfrac{{ - 1}}{5}\) khi \(x =  - 1\), \(y = 5\)

Khi \(x =  - 1\), \(y = 5\) thì \(xy + y = \left( { - 1} \right).5 + 5 = 0\) nên không thỏa mãn điều kiện xác định của \(N\). Vậy giá trị của phân thức \(N\) tại \(x =  - 1\), \(y = 5\) không xác định.

b) Ta có:

\(x.\left( {xy + y} \right) = {x^2}y + xy\)

\(\left( {{x^2} + x} \right).y = {x^2}y + xy\)

Vậy \(x\left( {xy + y} \right) = \left( {{x^2} + x} \right)y\)

4 tháng 1 2018

a, Ta có : \(\dfrac{98x^2-2}{x-2}=0\Leftrightarrow\left\{{}\begin{matrix}98x^2-2=0\\x-2\ne0\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x^2=\dfrac{1}{49}\\x\ne2\end{matrix}\right.\Leftrightarrow x=\pm\dfrac{1}{7}\)

Vậy giá trị của phân thức này bằng 0 khi \(x=\pm\dfrac{1}{7}\)

b, Ta có : \(\dfrac{3x-2}{x^2+2x+1}=0\Leftrightarrow\dfrac{3x-2}{\left(x+1\right)^2}=0\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\\left(x+1\right)^2\ne0\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\x\ne-1\end{matrix}\right.\)

Vậy giá trị của phân thức này bằng 0 khi \(x=\dfrac{2}{3}\)

29 tháng 4 2017

a)

98x^2 -2 =0 =>x^2 =1/49 => x= -+1/7 nhận

b)

3x-2=0=>x=2/3 nhận

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Thay \(x =  - 2\); \(y = \dfrac{1}{3}\) vào đa thức \(A\) ta có:

\(\begin{array}{l}A = 5.{\left( { - 2} \right)^2} - 4.\left( { - 2} \right).\dfrac{1}{3} + 2.\left( { - 2} \right) - 4.{\left( { - 2} \right)^2} + \left( { - 2} \right).\dfrac{1}{3}\\A = 5.4 - \dfrac{{ - 8}}{3} + \left( { - 4} \right) - 4.4 + \dfrac{{ - 2}}{3}\\A = 20 + \dfrac{8}{3} - 4 - 16 + \dfrac{{ - 2}}{3}\\A = 2\end{array}\)

Thay \(x =  - 2\); \(y = \dfrac{1}{3}\) vào đa thức \(B\) ta có:

\(\begin{array}{l}B = {\left( { - 2} \right)^2} - 3.\left( { - 2} \right).\dfrac{1}{3} + 2.\left( { - 2} \right)\\B = 4 - \left( { - 2} \right) + \left( { - 4} \right)\\B = 4 + 2 - 4\\B = 2\end{array}\)

Vậy \(A = B\)

22 tháng 4 2016

bài 1:

a, x^2-2x = x*(x-2)

b, x^2 -xy+x-y = x*(x-y) + (x-y)

                     = (x-y) (x+1)

22 tháng 4 2016

bài 2:

a, P xác định khi x^2 - 9 khác 0 suy ra (x-3)(x+3) khác 0 hay x khác 3 và -3

b, P= x^2 + 6x +9 / x^2 -9 

      = (x+3)^2 / (x-3)(x+3)

      = x+3/x-3

c, P=0 <=> x+3/x-3 =0 <=> x+3=0 <=> x=-3 (loại vì trái với điều khiện xác định)

Vậy P=0 thì không tìm đc x thỏa mãn

23 tháng 12 2020

B) Ta có: 2x-2y-x2+2xy-y2

⇔ 2(x-y)-(x2-2xy+y2)

⇔ 2(x-y)-(x-y)2

⇔ (x-y)(2-x+y)

Đúng thì tick nhé

26 tháng 12 2020

câu a đâu

 

11 tháng 6 2018

Phân thức Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 = 0 khi 98 x 2 + 2 = 0 và x – 2  ≠  0

Ta có: x – 2  ≠  0 ⇔ x  ≠  2

98 x 2 + 2 = 0  ⇔ 2 49 x 2 - 1 = 0 ⇔ (7x + 1)(7x – 1) = 0

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 thỏa mãn điều kiện x  ≠  2

Vậy Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 thì phân thức Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 có giá trị bằng 0.

6 tháng 5 2017

Phân thức Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 khi 3x – 2 = 0 và x + 1 2 ≠ 0

Ta có:  x + 1 2 ≠ 0  ⇔ x + 1 ≠ 0 ⇔ x ≠ - 1

3x – 2 = 0 ⇔ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 thỏa mãn điều kiện x ≠ - 1

Vậy Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 thì phân thức Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8có giá trị bằng 0.

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

26 tháng 11 2018

a, \(M=\frac{xy^2+y^2\left(y^2-x\right)+1}{x^2y^4+2y^4+x^2+2}=\frac{y^2\left(x+y^2-x\right)+1}{y^4\left(x^2+2\right)+\left(x^2+2\right)}=\frac{y^4+1}{\left(y^4+1\right)\left(x^2+2\right)}=\frac{1}{x^2+2}\)

Thay x=-3 vào M

=>\(M=\frac{1}{\left(-3\right)^2+2}=\frac{1}{11}\)

b, Vì \(x^2\ge0\Rightarrow x^2+2\ge2\Rightarrow M=\frac{1}{x^2+2}>0\)