\(P\left(1\right)=P\left(2017\right),P\left(2\right)=P\lef...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

Có \(a+b+c=0;\overline{ab}+\overline{bc}+\overline{ca}=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=0\)

Mà \(a^2;b^2;c^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge0\)

Dấu "=" xảy ra khi a;b;c = 0

Thay vào biểu thức ta có:

\(\left(0-1\right)^{2016}+\left(0-1\right)^{2017}+\left(0-1\right)^{2018}\)

\(=\left(-1\right)^{2016}+\left(-1\right)^{2017}+\left(-1\right)^{2018}\)

\(=1+\left(-1\right)+1\)

\(=1\)

6 tháng 7 2018

a+b+c=0

<=>(a+b+c)2=0

<=>a2+b2+c2+2(ab+bc+ca)=0

<=>a2+b2+c2=0

Vì \(a^2\ge0,b^2\ge0,c^2\ge0\)

=>\(a^2+b^2+c^2\ge0\)

Dấu "=" xảy ra khi a=b=c=0

từ đây thay vào

18 tháng 2 2018

À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)

\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)

\(\Leftrightarrow8a^2+8a-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................

17 tháng 2 2018

Tử và mẫu giống nhau mà

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

NV
6 tháng 1 2019

Ta có: \(x+2y+3x=0\Leftrightarrow x=-\left(2y+3z\right)\)

Lại có: \(2xy+6yz+3xz=0\Leftrightarrow x\left(2y+3z\right)+6yz=0\)

\(\Leftrightarrow-\left(2y+3z\right)\left(2y+3z\right)+6yz=0\Leftrightarrow-\left(2y+3z\right)^2+6yz=0\)

\(\Leftrightarrow\left(2y+3z\right)^2-6yz=0\Leftrightarrow4y^2+12yz+9z^2-6yz=0\)

\(\Leftrightarrow4y^2+6yz+9z^2=0\Leftrightarrow\left(2y+\dfrac{3z}{2}\right)^2+\dfrac{27z^2}{4}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2y+\dfrac{3z}{2}\right)^2=0\\\dfrac{27z^2}{4}=0\end{matrix}\right.\) \(\Rightarrow y=z=0\Rightarrow x=0\)

\(\Rightarrow S=\dfrac{\left(-1\right)^{2019}-1^{2017}+\left(-1\right)^{2015}}{1^{2018}+2.0^{2016}+0^{2014}+2}=\dfrac{-1-1+-1}{1+0+0+2}=\dfrac{-3}{3}=-1\)

Bài 2: 

a: \(\Leftrightarrow x^2+3x-x^2-11=0\)

=>3x-11=0

=>x=11/3

b: \(\Leftrightarrow x^3+8-x^3-2x=0\)

=>8-2x=0

=>x=4

Bài 3:

a: Sửa đề: \(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)

\(=2x\cdot2y=4xy\)

b: \(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)

\(=\left(9n-9\right)\left(5n+5\right)=9\left(n-1\right)\left(5n+5\right)⋮9\)