K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Lời giải:

Ta thấy đây là một hệ đối xứng. Nếu hệ có nghiệm \((x,y)=(m,n)\) thì cũng có nghiệm \((x,y)=(n,m)\)

Do đó để hệ có duy nhất một nghiệm thì trước nhất \(x=y\)

Thay vào PT ban đầu:

\((x+1)^2=x+a\)

\(\Leftrightarrow x^2+x+(1-a)=0\) (*)

Để tồn tại duy nhất một bộ nghiệm thì cần tồn tại duy nhất một giá trị $x$

Do đó (*) phải có nghiệm duy nhất

\(\Rightarrow \Delta=1-4(1-a)=0\Leftrightarrow a=\frac{3}{4}\)

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

25 tháng 5 2019

Hệ có nghiệm duy nhất \(\Leftrightarrow\left(a+1\right)\left(a-1\right)\ne-1\Leftrightarrow a^2\ne0\) hay a ≠​ 0

Hệ \(\Leftrightarrow\left\{{}\begin{matrix}a\left(x-y\right)=a-3\\x+\left(a-1\right)y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\left(a-3\right)}{a}+y\\\left(\frac{\left(a-3\right)}{a}+y\right)+\left(a-1\right)y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\left(a-3\right)}{a}+y\\\frac{\left(a-3\right)}{a}+ay=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\left(a-3\right)}{a}+\frac{a+3}{a^2}\\y=\frac{a+3}{a^2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{a^2-2a+3}{a^2}\\y=\frac{a+3}{a^2}\end{matrix}\right.\)

=> x+y=\(\frac{a^2-a+6}{a^2}=1-\frac{1}{a}+6.\frac{1}{a^2}\)
Đặt \(\frac{1}{a}=t\)
=> 6t2-t+1=\(6\left(t-\frac{1}{12}\right)^2+\frac{23}{24}\ge\frac{23}{24}\)
Dấu bằng xảy ra khi và chỉ khi \(t-\frac{1}{12}=0\Leftrightarrow t=\frac{1}{12}\Leftrightarrow a=12\)

9 tháng 2 2020

\(\left\{{}\begin{matrix}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{matrix}\right.\)

a) Khi m = -1 hệ \(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\2x-4y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\2x-4y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)

b) HPT có nghiệm duy nhất \(\Leftrightarrow\)\(m\ne2\)

Hệ \(\Leftrightarrow\left\{{}\begin{matrix}mx-x+y=3m-4\\x+my-y=m\end{matrix}\right.\)

\(\Rightarrow mx+my=4m-4\)

\(\Leftrightarrow3m=4m-4\Leftrightarrow m=4\)

7 tháng 5 2018

1)

2x + 3y = 300

Ta thấy 3y \(⋮\) 3 ; 300 \(⋮\) 3

=> 2x \(⋮\) 3

=> x \(⋮\) 3

đặt x = 3n ( n >0)

=> 2x + 3y = 300

=> 6n + 3y = 300

=> y = \(\dfrac{\left(300-6n\right)}{3}=\left(100-2n\right)\)

Vì y là số nguyên dương => y > 0

=> 100 - 2n > 0

=> 50 > n

=> 0<n<50

=> số nghiệm nguyên dương thoả mãn phương trình là :

(49-1):1+1 = 49 (nghiệm).