K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

Lời giải

a)

a.1) Trục đối xứng y =1/4

a.2) giao trục tung A(0,-2)

a.3) giao trục hoành (\(\left(\Delta=17\right)\) \(B\left(\dfrac{1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{1+\sqrt{17}}{4}\right)\)

b)

b.1) Trục đối xứng y =-1/4

b.2) giao trục tung A(0,2)

a.3) giao trục hoành \(\left(\Delta=17\right)\) \(B\left(\dfrac{-1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{-1+\sqrt{17}}{4}\right)\)

13 tháng 4 2017

a) y = x2 - 3x + 2. Hệ số: a = 1, b = - 3, c = 2.

  • Hoành độ đỉnh x1 =
  • Tung độ đỉnh y1 =

Vậy đỉnh parabol là .

  • Giao điểm của parabol với trục tung là A(0; 2).
  • Hoành độ giao điểm của parabol với trục hoành là nghiệm của phương trình:

x2 - 3x + 2 = 0 ⇔ x1 = , x1 = .

Vậy các giao điểm của parabol với trục hoành là B(1; 0) và C(2; 0).

b) Đỉnh I(1; 1). Giao điểm với trục tung A(0;- 3).

Phương trình - 2x2 + 4x - 3 = 0 vô nghiệm. Không có giao điểm cuả parabol với trục hoành.

c) Đỉnh I(1;- 1). Các giao điểm với hai trục tọa độ: A(0; 0), B(2; 0).

d) Đỉnh I(0; 4). Các giao điểm với hai trục tọa độ: A(0; 4), B(- 2; 0), C(2; 0).

a: Trục đối xứng là x=-(-1)/4=1/4

Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=-\dfrac{\left(-1\right)^2-4\cdot2\cdot\left(-2\right)}{4\cdot2}=-\dfrac{17}{8}\end{matrix}\right.\)

Thay y=0 vào (P), ta được:

2x^2-x-2=0

=>\(x=\dfrac{1\pm\sqrt{17}}{4}\)

thay x=0 vào (P), ta được:

y=2*0^2-0-2=-2

b: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-\left(-6\right)}{2\cdot\left(-3\right)}=\dfrac{6}{-6}=-1\\y=-\dfrac{\left(-6\right)^2-4\cdot\left(-3\right)\cdot4}{4\cdot\left(-3\right)}=7\end{matrix}\right.\)

=>Trục đối xứng là x=-1

Thay y=0 vào (P), ta được:

-3x^2-6x+4=0

=>3x^2+6x-4=0

=>\(x=\dfrac{-3\pm\sqrt{21}}{3}\)

Thay x=0 vào (P), ta được:

y=-3*0^2-6*0+4=4

c: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-\left(-1\right)}{2\cdot\left(-2\right)}=\dfrac{1}{-4}=\dfrac{-1}{4}\\y=-\dfrac{\left(-1\right)^2-4\cdot\left(-2\right)\cdot2}{4\cdot\left(-2\right)}=\dfrac{17}{8}\end{matrix}\right.\)

=>Trục đối xứng là x=-1/4

Thay y=0 vào (P), ta được:

-2x^2-x+2=0

=>2x^2+x-2=0

=>\(x=\dfrac{-1\pm\sqrt{17}}{4}\)

Thay x=0 vào (P), ta được:

y=-2*0^2-0+2=2

13 tháng 12 2017

Chương 2: HÀM SỐ BẬC NHẤT VÀ  BẬC HAI

20 tháng 12 2019

Ở đây a = 2; b = -2; c = -2. Ta có Δ   =   ( - 1 ) 2   -   4 . 2 . ( - 2 )   =   17

    Trục đối xứng là đường thẳng x = 1/4; đỉnh I(1/4; -17/8) giao với trục tung tại điểm (0; -2).

    Để tìm giao điểm với trục hoành ta giải phương trình

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vậy các giao điểm với trục hoành là

Giải sách bài tập Toán 10 | Giải sbt Toán 10

26 tháng 6 2019

Trục đối xứng x = -1/4; đỉnh I(-1/4; -17/8) giao với trục tung tại điểm (0;2); giao với trục hoành tại các điểm

Giải sách bài tập Toán 10 | Giải sbt Toán 10

26 tháng 10 2018

a) (P) cắt trục Ox tại điểm M(2;0) nên :

0=a.2^2+3.2-2=>a=-1

vậy (P): y=-x^2+3x-2

b) trục đối xứng x=-3 hay

\(-\dfrac{b}{2a}=-3\Leftrightarrow\dfrac{-3}{2a}=-3\Rightarrow a=\dfrac{1}{2}\\ \Rightarrow\left(P\right):y=\dfrac{1}{2}x^2+3x-2\)

c) có đỉnh I(-1/2;-11/4)=>

\(a.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)-2=-\dfrac{11}{4}\Rightarrow a=3\Rightarrow\left(P\right):y=3x^2+3x-2\)

5 tháng 6 2017

Điều kiện để (P): \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt là \(\Delta>0\).
Gọi \(x_1;x_2\) là hoành độ của hai giao điểm. Ta có:
\(x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}\);
Tọa độ giao điểm là:
\(A\left(\dfrac{-b+\sqrt{\Delta}}{2a};0\right)\); \(A\left(\dfrac{-b-\sqrt{\Delta}}{2a};0\right)\).

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng