K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

x^4-3x^3+3x^2+ax+b x^2-3x+4 x^2-1 x^4-3x^3+4x^2 -x^2+ax+b -x^2+3x-4 (a-3)x+(b+4)

\(\Rightarrow x^4-3x^3+3x^2+ax+b=\left(x^2-3x-4\right)\left(x^2-1\right)+\left(a-3\right)x+\left(b-4\right)\)

\(\Rightarrow\left(a-3\right)x+\left(b+4\right)=0\Rightarrow a=3;b=-4\)

2 tháng 11 2019

Cách bạn cool kid ko sai nhưng em thực hiện  phép chia sai đề bài: \(x^2-3x+4?\)dẫn đến kết quả ko đúng

Thêm một cách nhé! :)

\(x^2-3x-4=x-4x+x-4=x\left(x-4\right)+\left(x-4\right)=\left(x-4\right)+\left(x+1\right)\)

Đa thức \(x^2-3x+4\) có hai nghiệm là 4 và -1

Để \(x^4-3x^3+3x^2+ax+b⋮x^2-3x-4\)

thì 4 và -1 là 2 nghiệm của \(x^4-3x^3+3x^2+ax+b\)

=> \(\hept{\begin{cases}4^4-3.4^3+3.4^2+a.4+b=0\\\left(-1\right)^4-3\left(-1\right)^3+3\left(-1\right)^2+a\left(-1\right)+b=0\end{cases}}\)

=> \(\hept{\begin{cases}4a+b=-112\\-a+b=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-21\\b=-28\end{cases}}\)

NV
18 tháng 9 2019

a/ \(f\left(x\right)⋮\left(x^2-1\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-1\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2-1+a+b=0\\-2-1-a+b=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-1\\-a+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)

b/ Tương tự câu a, ta có \(\left\{{}\begin{matrix}f\left(3\right)=0\\f\left(-3\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}9a+3b=-90\\9a-3b=72\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-27\end{matrix}\right.\)

17 tháng 7 2018

Tham khảo nha bạn : http://lazi.vn/edu/exercise/xac-dinh-cac-hang-so-a-va-b-sao-cho-x4-ax-b-chia-het-cho-x2-4-x4-ax-bx-1-chia-het-cho-x2-1

7 tháng 12 2018

tao chx làm , yên tâm ik - sẽ ko ai tl m âu

7 tháng 12 2018

a) \(\left(27x^2+a\right):\left(3x+2\right)\) được thương là 9x -16 và dư a + 12

Để \(\left(27x^2+a\right)⋮\left(3x+2\right)\) thì số dư phải bằng 0

=> a + 12 = 0

=> a = -12

Bài b và c tham khảo cách làm tương tự ở đây

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

18 tháng 1 2019

Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)

\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)

Vì đẳng thức trên đúng với mọi x thuộc R

=> Với x = -4

\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)

\(\Rightarrow32-4a-4=0\)

\(\Rightarrow28=4a\Leftrightarrow a=7\)

Các bài khác tương tự thôi 

18 tháng 1 2019

b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)

=> Q(x) có bậc 1

=> \(Q_{\left(x\right)}=bx+c\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)

=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)

=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)

Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)

=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)

Đồng nhất hệ số => a = 3