K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 4 2020

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+2\left(m+3\right)x+4m+12=0\left(1\right)\end{matrix}\right.\)

Để pt đã cho có 3 nghiệm pb lớn hơn -1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb thỏa mãn \(\left\{{}\begin{matrix}x_1;x_2\ne1\\-1< x_1< x_2\end{matrix}\right.\)

\(a+b+c\ne0\Leftrightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)

\(\Delta'=\left(m+3\right)^2-\left(4m+12\right)>0\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=4m+12\end{matrix}\right.\)

\(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2m-6+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{7}{2}\\m< -2\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)

Vậy \(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)

tại sao lại có dòng a + b + c khác 0 ạ?

NV
6 tháng 3 2020

Phương trình luôn có 1 nghiệm \(x=1\)

Xét \(x^2+2\left(m+3\right)x+4m+12=0\) (1)

Để pt đã cho có 3 nghiệm thỏa mãn yêu cầu thì (1) có 2 nghiệm pb khác 1 và lớn hơn -1

\(\Rightarrow\left\{{}\begin{matrix}\Delta'>0\\a+b+c\ne0\\-1< x_1< x_2\end{matrix}\right.\)

Ta có: \(\Delta'=m^2+6m+9-4m-12=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)

\(a+b+c\ne0\Leftrightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)

\(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\frac{x_1+x_2}{2}>-1\\\left(x_1+1\right)\left(x_2+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>-2\\x_1x_2+x_1+x_2+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\left(m+3\right)>-2\\4m+12-2\left(m+3\right)+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m>-\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)

Kết hợp lại ta được: \(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)

NV
12 tháng 4 2020

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+2\left(m+3\right)x+4m+12=0\left(1\right)\end{matrix}\right.\)

Để pt có 3 nghiệm pb lớn hơn -1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb khác 1 và lớn hơn -1

\(a+b+c\ne0\Rightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)

Để pt có 2 nghiệm pb

\(\Rightarrow\Delta'=\left(m+3\right)^2-4m-12>0\)

\(\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)

Để pt có 2 nghiệm lớn hơn -1 \(\Leftrightarrow-1< x_1< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2\left(m+3\right)+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m+7>0\\m+3< 1\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)

Kết hợp lại ta được:

\(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)

5 tháng 4 2017

a)

ĐIều kiện (1)\(\Delta>0\Rightarrow\left(m+3\right)^2-4\left(m^2-1\right)\left(m^2+m\right)>0\)

ĐK(2) c/a <0 => (m^2+m)/(m^2-1) <0

Không cần giải đk (1) vì nếu (m) thủa mãn đk(2) tất nhiên thỏa mãn đk(1) do (x+3)^2 >=0

\(\dfrac{m^2+m}{m^2-1}=\dfrac{T}{M}\)

\(-1< m< 0\Rightarrow T< 0\)

\(-1< m< 1\Rightarrow M< 0\)

Để thủa mãn đk (2) cũng là giá trị m cần tìm là: \(\Rightarrow0< m< 1\)

b)

M thả mãn hệ \(\left\{{}\begin{matrix}\left(m^3+m-2\right)^2-4\left(m^2+m-5\right)\left(1\right)\\\left(m^2+m-5\right)< 0\left(2\right)\end{matrix}\right.\)

Tưng tự câu (a) Nếu (2) thủa mãn => ( 1) thỏa mãn

=> \(\left(2\right)\Rightarrow\dfrac{-1-\sqrt{21}}{2}< m< \dfrac{-1+\sqrt{21}}{2}\) cũng là giá trị m cần tìm