K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

Gọi O là giao điểm của giá hợp lực

F và AB

Hai lực \(F_1;F_2\)cùng chiều

Điểm đặt O trong khoảng AB :

+ Ta có :

\(\hept{\begin{cases}\frac{OA}{AB}\\OA+OB=AB=4cm\end{cases}}=\frac{F_2}{F_1}\)\(=3\)

\(\hept{\begin{cases}OA=3cm\\OB=1cm\end{cases}}\)

Vậy F có giá qua O cách A 3 cm , cachs B 1 cm , cùng chiều với \(F_1;F_2\)và có độ lớn \(F=8N\)

23 tháng 12 2021

ai biết 

31 tháng 3 2019

Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Ta biểu diễn Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 bằng hai vec tơ Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 như hình vẽ.

Khi đó Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 (C là đỉnh còn lại của hình bình hành MACB).

Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10

+ Tính MC : Gọi I là trung điểm của AB ⇒ I là trung điểm của MC.

Δ MAB có MA = MB = 100 và góc AMB = 60º nên là tam giác đều

⇒ đường cao Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10

⇒ MC = 2.MI = 100√3.

Vec tơ Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 là vec tơ đối của Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 có hướng ngược với Giải bài 10 trang 12 sgk Hình học 10 | Để học tốt Toán 10 và có cường độ bằng 100√3N.

Sửa đề: F1=40N

\(\overrightarrow{F_1}+\overrightarrow{F_2}=\sqrt{F_1^2+F_2^2+2\cdot F1\cdot F2\cdot cos60^0}\)

\(=\sqrt{40^2+30^2+2\cdot40\cdot30\cdot\dfrac{1}{2}}\)

\(=10\sqrt{37}\)

3 tháng 5 2019

1). Tam giác ABF và tam giác ACE ần lượt cân tại F, E 

F B A ^ = E C A ^ = A ^ 2 ⇒ Δ A B F ∽ Δ A C E .

2). Giả sử G là giao điểm của BE  CF.

Ta có  G F G C = B F C E = A B A C = D B D C ⇒ G D ∥ F B   , và  F B ∥ A D  ta có  G ∈ A D .

3). Chứng minh  B Q G ^ = Q G A ^ = G A E ^ = G A C ^ + C A E ^ = G A B ^ + B A F ^ = G A F ^ , nên AGQF nội tiếp, và Q P G ^ = G C E ^ = G F Q ^ , suy ra tứ giác FQGP nội tiếp.

26 tháng 1 2024

1) Chứng minh rằng tam giác \( A B F \) đồng dạng với tam giác \( A C E \):

- Tam giác \(ABF\) và \(ACE\) có:
  + Góc \(A\) chung.
  + Góc \(BAF\) bằng góc \(CAE\) (vì \(AD\) là phân giác của góc \(BAC\) và \(CF\), \(BE\) song song với \(AD\)).
  
  Do đó, tam giác \(ABF\) đồng dạng với tam giác \(ACE\) (theo trường hợp góc-góc).

2) Chứng minh rằng các đường thẳng \(BE\), \(CF\), \(AD\) đồng quy:

- Gọi \(G\) là giao điểm của \(BE\) và \(CF\).
- \(AD\) là phân giác góc \(BAC\), và \(BE\), \(CF\) song song với \(AD\). Do đó, \(G\) cũng nằm trên phân giác \(AD\).
- Vậy \(BE\), \(CF\), \(AD\) đồng quy tại \(G\).

3) Chứng minh rằng các điểm \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn:

- Gọi đường tròn ngoại tiếp tam giác \(GEC\) là \(\omega\).
- \(QE\) cắt \(\omega\) tại \(P\) khác \(E\), vậy \(P\) nằm trên đường tròn \(\omega\).
- \(GQ\) song song với \(AE\), và \(AE\) là đường kính của \(\omega\) (vì \(E\) là trung điểm của \(AC\) và \(G\) nằm trên phân giác của \(BAC\)). Do đó, \(GQ\) là dây cung của \(\omega\).
- \(PF\) là tiếp tuyến của \(\omega\) tại \(P\) (vì \(QE\) là tiếp tuyến và \(PF\) là phần kéo dài của \(QE\)).
- Góc \(PGF\) bằng góc \(GAC\) (cùng chắn cung \(GC\) của \(\omega\)).
- \(AF\) là trung trực của \(AB\), nên \(ABF\) là tam giác cân tại \(A\). Do đó, góc \(AFB\) bằng góc \(ABF\).
- Góc \(ABF\) bằng góc \(GAC\) (do đồng dạng của tam giác \(ABF\) và \(ACE\)).
- Vậy, góc \(PGF\) bằng góc \(AFB\). Do đó, \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn.

25 tháng 1 2022

Ta có: \(\overrightarrow{F}=\overrightarrow{F1}+\overrightarrow{F2}\) (1)

\(\Rightarrow\) \(F=\sqrt{F1^2+F2^2+2F1\cdot F2\cdot cos60^o}\) (Bình phương 2 vế của (1) r biến đổi vectơ F1, F2)

Chúc bn học tốt!